

Submerged Arc Welding Consumables

ITW Welding - Your Route to Full Performance Submerged Arc Welding

At ITW Welding we are passionate about the submerged arc welding process and this is reflected by our unique offering to the market. When you use Hobart's best in class welding consumables or Miller's cutting edge equipment, you will enjoy the most advanced and productive submerged arc products.

The interaction of two consumables – flux and wire – and the availability of a variety of process variants make submerged arc welding a complex arc welding process and fabricators may not always utilize its full potential.

Partnering with ITW Welding, you will have the deep knowledge and experience of our engineers at your side, along with fully equipped laboratories for dedicated application research.

Testing facilities include multi-wire installations to simulate and develop productive welding procedures for industrial segments such as longitudinal and spiral pipe mills, wind tower production, pressure vessel fabrication and shipbuilding. Often an audit by ITW Welding specialists at our customers' facilities precedes a route that leads to full performance submerged arc welding at lower bottom-line cost.

Our flux manufacturing utilizes the latest technology, producing high performance SAW fluxes with consistent quality and supplied in innovative packaging solutions for safe and cost efficient storage and handling.

ITW Welding is a total solutions provider for the submerged arc welding process, including welding heads, tractors, column & booms, flux drying & handling equipment and preheating equipment.

The offer includes engineering and automation and turnkey solutions, making us the ideal partner for one-stop-shopping.

Contact us and discover ways to implement submerged arc welding or optimize your existing processes to their full potential.

Table of Contents

Sele		

Flux selection guide by industrial application	5
Flux selection quick guide	6
SubCOR metal cored wire selection quick guide	7
SubCOR SL cored wire selection quick guide	8
SAW solid wire and strip range	9
Flux selection by SDX solid wire	10
Flux selection by SubCOR cored wire	10
Flux selection by AWS wire classification	11
Consumables	
SWX 110 - EN ISO 14174: S A AB 1 67 AC H5	12
SWX 120 - EN ISO 14174: S A AB 1 57 AC H5	14
SWX 130 - EN ISO 14174: S A AB 1 67 AC H5	16
SWX 135 - EN ISO 14174: S A AB 1 67 AC H5	18
SWX 140 - EN ISO 14174: S A FB 1 57 AC H5	20
SWX 150 - EN ISO 14174: S A FB 1 55 AC H5	22
SWX 220 - EN ISO 14174: S A AF 2 DC	26
SWX 282 - EN ISO 14171: S A AF 2 DC	28
SWX 305 - EN ISO 14174: S A AAS 2B DC	29
SWX 330 - EN ISO 14174: ES A FB 2B DC	30
SWX 382 - EN ISO 14174: ES A AF 2B DC	31
SWX 010 - Powder backing for one-sided welding	32
Approval certficates	33
Packaging solutions	34
Storage and handling recommendations	35
Full performance submerged arc welding pays back	36
Hobart SubCOR cored wires for submerged arc welding	38
Improved productivity from SubCOR metal-cored wires	40
Flux cored micro injection	42
Classification standards	44
Submerged arc welding process	51
Submerged arc power sources and AC wave balance	60
SAW and ESW strip cladding	64
Trouble shooting	66

NOTE: With this catalogue, ITW Welding introduces its all new, global range of Hobart submerged arc welding consumables under the new product names SWX for fluxes, SDX for solid wires and SubCOR for cored wires. Earlier products marketed in individual countries under brand names like Hobart, Elga and Tien Tai remain to be available until further notice.

Disclaimer: The information contained herein is furnished for reference purposes only and is believed to be accurate and reliable. Typical data are those obtained when welding and testing are performed in accordance with prescribed standards and guidelines. Other tests may produce different results and typical data should not be assumed to yield similar results in a particular application or weldment. ITW Welding does not assume responsibility for any results obtained by persons over whose methods it has no control. It is the user's responsibility to determine the suitability of any products or methods mentioned herein for a particular purpose. In light of the foregoing, ITW Welding specifically disclaims all warranties, express or implied, including warranties of merchantability and fitness for a particular purpose, and further disclaims any liability for consequential or incidental damages of any kind, including lost profits.

Best-in-Class Submerged Arc Welding Consumables from a Trusted Source

Since 1917, the Hobart name enjoys a solid reputation for quality, innovation and knowhow. Under this brand, ITW Welding now brings together a wealth of submerged arc welding expertise and consumables with unequalled welding performance.

This catalogue features best in class products for the welding of all commonly applied construction steels, stainless steels and high-alloyed Ni-base alloys, including solutions for SAW and ESW strip cladding.

Special flux/wire combinations have been developed to meet specific requirements of demanding industries, such as offshore construction, pressure vessel fabrication and pipe mills.

Hobart submerged arc welding consumables are manufactured using state-of-the-art production technology. They carry the name SWX for agglomerated submerged arc fluxes, SDX for solid wires, SubCOR for the advanced range of low-hydrogen cored wires and Cromastrip for strips for submerged arc and electroslag cladding.

Hobart submerged arc products are brought on the market supported by a dedicated team of specialists, capable of providing integrated submerged arc welding solutions.

Flux Selection Guide by Industrial Application

		Joinir	ıg					Strip cladding						
		Non-	& low-a	lloyed				Stain- less		SAW	ESW			
	Depending on requirements	SWX 110	SWX 120	SWX 130	SWX 135	SWX 140	SWX 150	SWX 220	SWX 282	SWX 305	SWX 330	SWX 382		
Civil construction	Beams, bridges, buildings	~												
0	Normal strength steel	~												
Cranes	High strength steel					~	~							
055.1	Constructions	~				~	~							
Offshore	Process equipment							~	~					
Pipelines	Double jointing	~				~	~							
Pipe mills	Longitudinal			~				~						
	Spiral	~			~									
	Boilers	~				~	~	~		~	~	~		
Power generation	Nuclear						~	~		~	~			
	Tube to fin	~												
Pressure vessels	Joining	~	~			~	~	~						
riessule vessels	Surfacing									~	~	~		
Process industry	Hydrocrackers						~							
Frocess industry	Pulp & paper							~	~					
Shipbuilding	Butt and fillet welding	~												
Shipbullullig	Handling equipment					*								
	Chemical tanks							~						
Storage tanks	LPG tanks							~						
	Oil tanks	~	~											
	Beams for trucks and rail cars	~												
Transport	Heavy equipment	~	~											
	Wheels	~												
Wind energy	Monopiles, tri-pods, jackets		~				~							
a onorgy	Towers		~											

Flux Selection Quick Guide

Medium basis general purpose flux applied in a variety of industries Medium basis general purpose flux allowing high travel speeds Covers a vide range of applications Can be used with a range of wires to cover mild steel and medium tensile fine-grained steel with impact toughness requirements down to 40°C (40°F) SWX 120 Flux for wind tower fabrication Suitable for circumferential and long/fudinal multi-layer welds Productive flux with good impact toughness down to 50°C (58°F), using standard quality \$2 and \$28) solid wires Single and multi-wire operations SWX 130 Flux for long/futional pipe mills High current carrying capacity High welding speed and good mechanical properties in two-run welding with up to five wires Flat and wide bead profile with smooth worthing SWX 135 Flux for spiral pipe mills High welding speed and good mechanical properties in two-run welding with up to three wires fast freezing sign Flux and wide bead profile with smooth wetting SWX 140 Multit-purpose flux for applications with increased fourteness demands Versatile and productive basic flux for applications with increased fowtemperature toughness demands down to 50°C (58°F) Modes toughness requirements down to 60°C (76°F) with SubCOR cored wires Single- and multi-wire setups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to 60°C (76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and not may make, multi-layer welds Subcellent impact toughness down to 450°C (76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and reep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Submerged or extrp cladding with stainless strips Austentic stainless composition in one layer High current carr	SWX 120 FILE Su Pro Sir SWX 130 FILE High	edium basic general purpose flux allowing high travel speeds wers a wide range of applications in be used with a range of wires to cover mild steel and medium tensile fine-grained steel with impact toughness quirements down to -40°C (-40°F) ux for wind tower fabrication iitable for circumferential and longitudinal multi-layer welds oductive flux with good impact toughness down to -50°C (-58°F), using standard quality S2 and S2Si solid wires ingle- and multi-wire operations
Covers a wide range of applications Can be used with a range of wires to cover mild steel and medium tensile fine grained steel with impact toughness requirements down to 40°C (40°C). SWX 120 Flux for wind tower fabrication Suitable for circumferential and longitudinal multi-layer welds Productive flux with good impact toughness down to -50°C (-58°F), using standard quality S2 and S2Si solid wires Single- and multi-wire operations SWX 130 Flux for longitudinal plipe mills High current carrying capacity High selfing speed and good mechanical properties in two-run welding with up to five wires Flat and wide bead profile with smooth wetting SWX 131 Flux for spiral plipe mills High selfing speed and good mechanical properties in two-run welding with up to three wires Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased toveremperature toughness demands of the structure of the spiral properties own to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and two-run welds, multi-layer welds Single- and two-run welds, multi-layer welds Single- and multi-wire seet-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + cryonal properties of the spiral pr	SWX 120 Floor Signature SWX 130 Floor High	wers a wide range of applications in be used with a range of wires to cover mild steel and medium tensile fine-grained steel with impact toughness quirements down to -40°C (-40°F) ux for wind tower fabrication iitable for circumferential and longitudinal multi-layer welds oductive flux with good impact toughness down to -50°C (-58°F), using standard quality S2 and S2Si solid wires ngle- and multi-wire operations
Can be used with a range of wires to cover mild steel and medium tensile fine grained steel with impact toughness requirements down to 40°C (40°F) SWX 120 Flux for wind tower fabrication Suitable for circumferential and longitudinal multi-layer welds Productive flux with good impact toughness down to -50°C (-58°F), using standard quality 52 and S25i solid wires Single and multi-wire operations SWX 130 Flux for longitudinal pipe mills High current carrying capacity High welding speed and good mechanical properties in two-run welding with up to five wires Flat and wide bead profile with smooth wetting SWX 135 Flux for spiral pipe mills High welding speed and good mechanical properties in two-run welding with up to three wires Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubcOR cored wires Single and multi-wire setups High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) ~ CTOD Wide range of flux (wire combinations, including for high strength, low-temperature and creep resistant applications Single and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single or multi-un operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SWX 405 SWX 406 Suthable for a wide range of stainless steel applications at standard welding speed Flux for joining, Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single or multi-un operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SWX 406 Suthable for a wide range of stainless strips Austentic cl	SWX 120 Fit Su Pro Sir SWX 130 Fit Hig	in be used with a range of wires to cover mild steel and medium tensile fine-grained steel with impact toughness quirements down to -40°C (-40°F) ux for wind tower fabrication iitable for circumferential and longitudinal multi-layer welds oductive flux with good impact toughness down to -50°C (-58°F), using standard quality S2 and S2Si solid wires ngle- and multi-wire operations
requirements down to 40°C (40°F) SWX 120 Flux for wind tower fabrication Suitable for circumferential and longitudinal multi-layer welds Productive flux with good impact toughness down to -50°C (-58°F), using standard quality \$2 and \$2\$i solid wires single- and multi-wire operations SWX 130 Flux for longitudinal pipe mills High current carrying capacity High welding speed and good mechanical properties in two-run welding with up to five wires Flat and wide bead profile with smooth wetting SWX 135 Flux for spiral pipe mills High welding speed and good mechanical properties in two-run welding with up to three wires Flat freezing sing Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatilie and productive basic flux for applications with increased toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and multi-wire setups SWX 150 High basicity flux for demanding applications For demanding applications, such as off-shore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) with SubCOR cored wires Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austentic, duples and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent impact toughness down to -60°C (-76°F) with SubCOR cored wires Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austentic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Austenitic stainless alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-76°F) with SubCOR Austenitic stainless composition on mild	SWX 120 Florence Surpression Surpression Florence Florence Surpression Florence Surpression Florence Flor	quirements down to -40°C (-40°F) ux for wind tower fabrication itable for circumferential and longitudinal multi-layer welds oductive flux with good impact toughness down to -50°C (-58°F), using standard quality S2 and S2Si solid wires ngle- and multi-wire operations
Suitable for circumferential and longitudinal multi-layer welds Productive flux with good impact toughness down to -50°C (-58°F), using standard quality \$2 and \$25i solid wires Single and multi-wire operations SWX 130 Flux for longitudinal pipe mills High current carrying capacity High welding speed and good mechanical properties in two-run welding with up to five wires Flat and wide bead profile with smooth wetting SWX 135 Flux for spiral pipe mills High welding speed and good mechanical properties in two-run welding with up to three wires Fast freezing slag Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-78°F) with SubCOR cored wires Single- and multi-wire set-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-78°F) + CTOD Wide range of flux wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow goo welding SWX 220 Stainless steel joining flux Joining of austernitic, duplox and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent sign detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed Flux for joining Mi-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged are strip cladding with stainless strips Austernitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 300 ESW strip cladding flux Austernitic stainless composition in o	Su Pro Sir SWX 130 Flu Hig Hig	itable for circumferential and longitudinal multi-layer welds oductive flux with good impact toughness down to -50°C (-58°F), using standard quality S2 and S2Si solid wires ngle- and multi-wire operations
Productive flux with good impact toughness down to -50°C (-58°F), using standard quality S2 and S2Si solid wires Single- and multi-wire operations WXX 130 Flux for longitudinal pipe mills High current carrying capacity High welding speed and good mechanical properties in two-run welding with up to five wires Flat and wide bead profile with smooth wetting SWX 135 Flux for spiral pipe mills High welding speed and good mechanical properties in two-run welding with up to three wires Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and multi-wire set-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTDD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gao welding SWX 220 Stalnless steel joining flux Joining of austentic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Sutable for a wide range of stainless steel applications at standard welding speed SWX 228 Flux for joining hi-base alloys, such as Alloy 800 and Alloy 825 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 300 SWX strip cladding flux Submerged are strip cladding with stainless strips Austentic stainless composition on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 300 ESW strip cladding flux Austentic stainless composition in one layer High current carrying capacity	Pro Sir SWX 130 Flu Hig Hig	oductive flux with good impact toughness down to -50°C (-58°F), using standard quality S2 and S2Si solid wires ngle- and multi-wire operations
Single- and multi-wire operations SWX 130 Flux for longitudinal pipe mills High current carrying capacity High welding speed and good mechanical properties in two-run welding with up to five wires Flat and wide bead profile with smooth wetting SWX 135 Flux for splral pipe mills High welding speed and good mechanical properties in two-run welding with up to three wires Fast freezing slag Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and multi-wire set-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/ wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 200 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Austenitic stainless compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 306 SWX strip cladding flux Austentic stainless composition in one layer High current carrying capacity	Sir SWX 130 Flo Hig Hig	ngle- and multi-wire operations
Flux for longitudinal pipe mills High current carrying capacity High welding speed and good mechanical properties in two-run welding with up to five wires Flat and wide bead profile with smooth wetting SWX 135 Flux for spiral pipe mills High welding speed and good mechanical properties in two-run welding with up to three wires Fast freezing slag Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to .50°C (.58°F) Meets toughness requirements down to .60°C (.76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and multi-wire setups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to .60°C (.76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austentiic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to .196°C (.320°F) SWX 305 SAW strip cladding flux Austentic dad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 306 ESW strip cladding flux Austentic dated flux Austentic dated flux Austentic dated servers prospections on mild and low-alloyed steel	SWX 130 Flu	
High current carrying capacity High welding speed and good mechanical properties in two-run welding with up to five wires Flat and wide bead profile with smooth wetting SWX 135 Flux for spiral pipe mills High welding speed and good mechanical properties in two-run welding with up to three wires Fast freezing slag Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single and multi-wire setups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austentic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged are strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 300 SWX 510 SW	Hi _ē Hi _ē	uy for longitudinal nine mille
High welding speed and good mechanical properties in two-run welding with up to five wires Flat and wide bead profile with smooth wetting SWX 135 Flux for spiral pipe mills High welding speed and good mechanical properties in two-run welding with up to three wires Fast freezing slag Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and two-run welds, multi-layer welds Single- and multi-wire set-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austentitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding flux ESW strip cladding flux ESW strip cladding flux ESW strip cladding flux ESW strip cladding flux Less stainless composition in one layer High current carrying capacity	Hig	ux for fongitudinal pipe innis
Flat and wide bead profile with smooth wetting SWX 135 Flux for spiral pipe mills High welding speed and good mechanical properties in two-run welding with up to three wires Fast freezing slag Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) which subcord cored wires Single- and two-run welds, multi-layer welds Single- and multi-wire set-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/ wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austentiic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity		gh current carrying capacity
Flux for spiral pipe mills High welding speed and good mechanical properties in two-run welding with up to three wires Fast freezing slag Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and multi-wire set-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austentitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding flux ESW strip cladding flux	Fla	gh welding speed and good mechanical properties in two-run welding with up to five wires
High welding speed and good mechanical properties in two-run welding with up to three wires Fast freezing slag Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and multi-wire set-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austentitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austentic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux ESW strip cladding flux Austentic stainless composition in one layer High current carrying capacity	110	at and wide bead profile with smooth wetting
Fast freezing slag Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and multi-wire set-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged are strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	SWX 135 Flo	ux for spiral pipe mills
Flat and wide bead profile with smooth wetting SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and multi-wire set-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding flux Submerged arc strip cladding flux ESW x 306 ESW strip cladding flux ESW strip cladding flux Austentitic stainless composition in one layer High current carrying capacity	Hig	gh welding speed and good mechanical properties in two-run welding with up to three wires
SWX 140 Multi-purpose flux for applications with increased toughness demands Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and multi-wire set-ups With basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austentic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys Joining of Ni-base alloys Local complete impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Fas	st freezing slag
Versatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F) Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and two-run welds, multi-layer welds Single- and multi-wire set-ups For demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining fNi-base alloys Joining of Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Fla	at and wide bead profile with smooth wetting
Meets toughness requirements down to -60°C (-76°F) with SubCOR cored wires Single- and two-run welds, multi-layer welds Single- and multi-wire set-ups For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austentitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged are strip cladding with stainless strips Austentic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux ESW strip cladding flux Austentitic stainless composition in one layer High current carrying capacity	SWX 140 M	ulti-purpose flux for applications with increased toughness demands
Single- and two-run welds, multi-layer welds Single- and multi-wire set-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Vei	rsatile and productive basic flux for applications with increased low-temperature toughness demands down to -50°C (-58°F)
Single- and multi-wire set-ups SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Me	eets toughness requirements down to -60°C (-76°F) with SubCOR cored wires
SWX 150 High basicity flux for demanding applications For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Sir	ngle- and two-run welds, multi-layer welds
For demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Sir	ngle- and multi-wire set-ups
Excellent impact toughness down to -60°C (-76°F) + CTOD Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	SWX 150 Hi	gh basicity flux for demanding applications
Wide range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	For	r demanding applications, such as offshore, pressure vessel, cryogenic and nuclear fabrication
Single- and multi-wire operations Narrow gap welding SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Exc	cellent impact toughness down to -60°C (-76°F) + CTOD
Narrow gap welding SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Wie	de range of flux/wire combinations, including for high strength, low-temperature and creep resistant applications
SWX 220 Stainless steel joining flux Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Sir	ngle- and multi-wire operations
Joining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Na	arrow gap welding
Excellent slag detachability in multi-run welds Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	SWX 220 St	ainless steel joining flux
Suitable for a wide range of stainless steel applications at standard welding speed SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Joi	ining of austenitic, duplex and super duplex stainless steels, dissimilar joints and higher alloyed stainless steel grades
SWX 282 Flux for joining Ni-base alloys Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Exc	cellent slag detachability in multi-run welds
Joining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625 Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Su	itable for a wide range of stainless steel applications at standard welding speed
Single- or multi-run operation Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	SWX 282 FI	ux for joining Ni-base alloys
Excellent impact toughness down to -196°C (-320°F) SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Joi	ining of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625
SWX 305 SAW strip cladding flux Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Sir	ngle- or multi-run operation
Submerged arc strip cladding with stainless strips Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Exc	cellent impact toughness down to -196°C (-320°F)
Austenitic clad layer compositions on mild and low-alloyed steel Smooth bead appearance and easy slag removal SWX 330	SWX 305 SA	AW strip cladding flux
Smooth bead appearance and easy slag removal SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Su	bmerged arc strip cladding with stainless strips
SWX 330 ESW strip cladding flux ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Au	stenitic clad layer compositions on mild and low-alloyed steel
ESW strip cladding flux Austenitic stainless composition in one layer High current carrying capacity	Sm	nooth bead appearance and easy slag removal
Austenitic stainless composition in one layer High current carrying capacity	SWX 330 ES	SW strip cladding flux
High current carrying capacity	ES	W strip cladding flux
	Au	stenitic stainless composition in one layer
SWV 292 FSW strip pladding flux. Ni haca	Hig	gh current carrying capacity
3WA 302 E3W Strip Clauding Hux, Ni-Dase	SWX 382 ES	SW strip cladding flux, Ni-base
Electroslag strip cladding with Ni-base strips	Ele	ectroslag strip cladding with Ni-base strips
Ni-base clad composition in one or two layers	Ni-	base clad composition in one or two layers
SWX 010 Powder backing for one-sided welding on copper weld metal supports	SWX 010 Po	owder backing for one-sided welding on copper weld metal supports
Has no influence on weld metal properties	На	s no influence on weld metal properties
Gives a regular, smooth root pass	Giv	ves a regular, smooth root pass

SubCOR metal cored wire selection quick guide

Product Features	
General purpose cored wire electrode for submerged arc welding of non-	alloyed steels
Higher deposition rate than solid wires SubCOR EM12K-S	
Similar in chemistry to AWS A5.17: EM12K	
Suitable fluxes: SWX 110, SWX 120, SWX 140 and SWX150	
General purpose cored wire electrode for submerged arc welding of non-	alloyed steels
Higher deposition rate than solid wires and at the same time improved in SubCOR EM13K-S	mpact toughness properties
Similar in chemistry to AWS A5.17: EM13K	
Suitable fluxes: SWX 110, SWX 120 and SWX150	
General purpose cored wire electrode for submerged arc welding of non-	alloyed steels with PWHT
Higher deposition rate than solid wires SubCOR EM13K-S MOD	
Similar in chemistry to AWS A5.17: EM13K	
Suitable fluxes: SWX 110, SWX 120, SWX 140 and SWX 150	
Low-alloyed cored wire electrode for high strength applications: AWS A5.	23 chemistry M1
Designed for tensile strength levels above 550 MPa (80ksi)	
Like all SubCOR wires it provides improved depostion rates compared to	solid wires
Suitable fluxes: SWX 140 and SWX 150	
Low-alloyed wire for high strength applications: AWS A5.23 chemistry F2	!
SubCOR F2-S Designed for tensile strength levels over 620 MPa (90 ksi)	
Suitable flux: SWX 150	
Low-alloyed wire for high strength applications: AWS A5.23 chemistry F3	
SubCOR 100F3-S Designed for tensile strength levels over 690 MPa (100 ksi)	
Suitable fluxes: SWX 140 and SWX 150	
Low-alloyed cored wire electrode for high strength applications: AWS A5.	23 chemisty M4
Designed for tensile strength levels above 760 MPa (110 ksi)	
Like all SubCOR wires it provides improved depostion rates compared to	solid wires
Suitable flux: SWX 150	
Low-alloyed cored wire electrode where a 1% nickel deposit is required:	AWS A5.23 chemistry Ni1
SubCOR N1-S Designed for tensile strengths above 480 MPa (70 ksi)	
Suitable fluxes include SWX 150	
Low-alloyed wire for copper alloyed weathering steels	
SubCOR W-S Very good impact properties down to - 50 °C (- 60 °F)	
Suitable flux: SWX 150	
Cr-Mo alloyed wire for creep resistant steels. Chemistry- AWS A5.23 B2	
SubCOR B2-S Like all SubCOR wires it provides improved deposition rates compared to	solid wires
Suitable flux: SWX 150	
Cr-Mo alloyed wire for creep resistant steels. Chemistry- AWS A5.23 B3	
SubCOR B3-S Like all SubCOR wires it provides improved depostion rates compared to	solid wires
Suitable flux: SWX 150	

SubCOR SL cored wire selection quick guide

Product	Features
SubCOR SL 731	General purpose cored wire electrode for submerged arc welding of non alloyed steels
	Higher deposition rate than solid wires and at the same time improved impact toughness properties
	Recommended instead of SDX S2, SDX S2Si-EM12K, SDX S2Mo-EA2 or SDX S3Si-EH12K solid wires
	Suitable fluxes SWX 110, SWX 120 and SWX150
SubCOR SL 840 HC	Specifically designed for offshore construction, pressure vessels and double jointing for pipelines
	Gives excellent impact toughness properties also in stress relieved condition
	Suitable flux SWX 140
SubCOR SL 735 1W-5W	For Flux Cored Micro Injection (FMI) in combination with other cored and/or solid wires
	Available in 5 versions with specific chemistry for single, tandem and up to 5 wire set ups
	For significantly enhanced impact properties both in single and two run applications
	Suitable fluxes SWX 130 and SWX 135
SubCOR SL 741	Low alloyed cored wire electrode for high strength applications
	Designed for yield strength levels up to 550 MPa (80 ksi)
	Like all SubCOR wires it provides improved depostion rates compared to solid wires
	Suitable fluxes SWX 140 and SWX 150
SubCOR SL 742	Low alloyed wire for high strength applications
	Designed for yield strength levels up to 690 MPa (100 ksi)
	Suitable flux SWX 150
SubCOR SL 745	Low alloyed wire for high strength applications
	Designed for yield strength levels up to 890 MPa (130 ksi)
	Suitable flux SWX 150
SubCOR SL 281 Cr	Low alloyed wire for copper alloyed weathering steels
	Very good impact properties down to -40°C (-40°F)
	Suitable flux SWX 110
SubCOR SL P1	Low alloyed cored wire electrode for creep resisting steels
	Comparable strength level but significantly higher impact toughness than SDXS2Mo-EA2 solid wire
	Suitable flux SWX 150
SubCOR SL P1 MOD	The same basic features as SubCOR SL P1 but with an addition of vanadium
	Like all SubCOR wires it provides improved depostion rates compared to solid wires
	Suitable flux SWX 150
SubCOR SL P11	Low alloyed wire for creep resisting steels
	Comparable strength level but significantly higher impact toughness than SDX CrMo1-EB2R solid wire
	Suitable flux SWX 150
SubCOR SL P12 MOD	Low alloyed wire for creep resisting steels
	For joining of CrMoV-steels up to 550 °C (1020 °F)
	Suitable flux SWX 150
SubCOR SL P36	For economic joining of Mo alloyed creep resisting steels up to 500 °C (930°F)
	Ideal for production and repair welding
	Suitable flux SWX 150
SubCOR SL P22	For joining of creep resisting and pressure-hydrogen-resisting 2 ¹ / ₄ Cr1Mo-steels
	Meets requirements of step cooling due to very low weld metal contaminations
	Suitable flux SWX 150
SubCOR SL P24	For joining of creep resisting and pressure-hydrogen-resisting 2 ¹ / ₄ Cr1MoV-steels
	Meets requirements of step cooling due to very low weld metal contaminations
	Suitable flux SWX 150
SubCOR SL P5	High-alloy cored wire electrode for creep resisting steels
	For surfacing and joining of similar creep-resisting and pressure-hydrogen-resisting boiler tube steels
	Creep and scale resisting up to 600 °C (1100 °F)
	Suitable flux SWX 150
SubCOR SL P9	For surfacing and joining of similar creep-resisting and pressure-hydrogen-resisting boiler tube steels
	Creep and scale resisting up to 600 °C (1100 °F)
	Suitable flux SWX 150
SubCOR SL P91	For surfacing and joining of similar creep-resisting and pressure-hydrogen-resisting boiler tube steels
	Creep and scale resisting up to 600 °C (1100 °F)
	Suitable flux SWX 150
SubCOR SL P92	For surfacing and joining of similar creep-resisting and pressure-hydrogen-resisting boiler tube steels
	Creep and scale resisting up to 650 °C (1200 °F)
	Suitable flux SWX 150

SAW Solid Wire and Strip Range

	com	ositio	n (%)									
Non- & low-alloy	yed solid wires		С	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Other
Product name	EN ISO	AWS										
SDX S1-EL12	EN ISO 14171: S1	AWS A5.17: EL12	0.08	0.07	0.49	0.010	0.013	0.05	0.03	0.01	0.06	
SDX EM13K		AWS A5.17: EM13K	0.08	0.57	1.10	0.011	0.012	0.06	0.03	0.02	0.05	
SDX S2	EN ISO 14171: S2		0.10	0.11	0.97	0.010	0.011	0.05	0.05	0.02	0.04	
SDX S2Si-EM12K	EN ISO 14171: S2Si	AWS A5.17: EM12K	0.09	0.22	1.12	0.009	0.011	0.04	0.04	0.01	0.03	
SDX S2Mo-EA2	EN ISO 14171: S2Mo	AWS A5.23: EA2	0.09	0.12	1.09	0.010	0.012	0.05	0.04	0.50	0.04	
SDX S3	EN ISO 14171: S3		0.11	0.12	1.55	0.010	0.009	0.04	0.03	0.01	0.05	
SDX S3Si-EH12K	EN ISO 14171: S3Si	AWS A5.17: EH12K	0.11	0.29	1.69	0.009	0.010	0.05	0.05	0.02	0.06	
SDX S3Mo-EA4	EN ISO 14171: S3Mo	AWS A5.23: EA4	0.12	0.10	1.45	0.010	0.012	0.04	0.03	0.52	0.05	
SDX S4-EH14	EN ISO 14171: S4	AWS A5.17: EH14	0.13	0.07	1.95	0.009	0.010	0.03	0.03	0.01	0.04	
SDX CrMo1-EB2R	EN ISO 24598: S CrMo1	AWS A5.23: EB2R	0.10	0.15	0.88	0.006	0.004	1.15	0.04	0.55	0.03	X<12
SDX CrMo2-EB3R	EN ISO 24598: S CrMo2	AWS A5.23: EB3R	0.11	0.14	0.60	0.004	0.005	2.45	0.05	1.02	0.04	X<12
SDX S2Ni1-ENi1	EN ISO 14171: S2Ni1	AWS A5.23: ENi1	0.09	0.12	0.96	0.09	0.07	0.04	0.97	0.02	0.05	
SDX S2Ni2-ENi2	EN ISO 14171: S2Ni2	AWS A5.23: ENi2	0.09	0.15	1.00	0.007	0.006	0.04	2.29	0.02	0.05	
SDX S2Ni1Cu	EN ISO 14171: S2Ni1Cu		0.10	0.22	0.99	0.010	0.009	0.25	0.79	0.02	0.49	
SDX S3Ni1Mo0.2-ENi5	EN ISO 14171: S3Ni1Mo0.2	AWS A5.23: ENi5	0.10	0.21	1.44	0.009	0.009	0.03	0.96	0.21	0.04	
SDX S3Ni1Mo-EF3	EN ISO 14171: S3Ni1Mo	AWS A5.23: EF3	0.12	0.11	1.72	0.010	0.008	0.03	0.92	0.55	0.05	
SDX S3Ni2.5CrMo	EN ISO 26304: S3Ni2.5CrMo		0.12	0.15	1.47	0.010	0.011	0.63	2.28	0.53	0.03	
SDX S3TiB			0.08	0.27	1.50	0.007	0.006	0.02	0.03	0.01	0.04	Ti 0.16. B 0.012
SDX S3MoTiB			0.07	0.25	1.30	0.009	0.007	0.03	0.03	0.53	0.05	Ti 0.15. B 0.013
Stainless solid	wires		С	Si	Mn	Р	S	Cr	Ni	Мо	N	Other
SDX 308L	EN ISO 14343: S 19 9 L	AWS A5.9: ER308L	0.02	0.48	1.80	0.012	0.010	20.2	10.3	0.2	0.04	
SDX 347	EN ISO 14343: S 19 9 Nb	AWS A5.9: ER347	0.03	0.42	1.72	0.013	0.012	19.8	9.8	0.1	0.07	Nb 0.7
SDX 316L	EN ISO 14343: S 19 12 3 L	AWS A5.9: ER316L	0.01	0.49	1.77	0.015	0.011	18.6	12.2	2.7	0.05	
SDX 317L	EN ISO 14343: S 19 13 4 L	AWS A5.9: ER317L	0.01	0.42	1.78	0.014	0.013	19.0	13.7	3.5	0.05	
SDX 309L	EN ISO 14343: S 23 12 L	AWS A5.9: ER309L	0.01	0.45	1.85	0.016	0.012	23.7	12.9	0.1	0.06	
SDX 309LMo	EN ISO 14343: S 23 12 2 L		0.01	0.37	1.49	0.016	0.015	23.4	13.2	2.6	0.04	
SDX 410NiMo		AWS A5.9: ER410NiMo	0.05	0.42	0.51	0.014	0.011	12.1	4.5	0.6	0.05	
SDX 2209	EN ISO 14343: S 22 9 3 N L	AWS A5.9: ER2209	0.01	0.48	1.50	0.016	0.010	22.9	8.3	3.2	0.15	
SDX 2594	EN ISO 14343: S 25 9 4 N L	AWS A5.9: ER2594	0.01	0.45	0.44	0.015	0.016	24.9	9.4	3.8	0.26	
Nickel base sol	id wires		С	Si	Mn	Р	S	Cr	Ni	Мо	N	Other
SDX NiCrMo-3	EN ISO 18274: S Ni6625	AWS A5.14: ERNiCrMo-3	0.06	0.22	0.27	0.014	0.013	21.9	Bal.	9.1		Nb: 3.3 Fe: 1.1
SDX NiCr-3	EN ISO 18274: S Ni6082	AWS A5.14: ERNiCr-3	0.05	0.25	3.10	0.017	0.009	19.80	Bal.	0.13		Nb: 2.8 Fe: 1.0
Stainless strips			С	Si	Mn	Р	S	Cr	Ni	Mo	N	Other
For SAW												
Cromastrip 308L	EN ISO 14343: B 19 9 L	AWS A5.9: EQ308L	0.01	0.4	1.7	0.014	0.001	20.3	10.3	0.1	0.05	
Cromastrip 347	EN ISO 14343: B 19 9 Nb	AWS A5.9: EQ347	0.02	0.4	1.7	0.014	0.001	19.7	10.5	0.0	0.05	Nb 0.5
Cromastrip 316L	EN ISO 14343: B 19 12 3 L	AWS A5.9: EQ316L	0.02	0.4	1.6	0.020	0.001	18.3	12.6	2.8	0.05	
Cromastrip 309L	EN ISO 14343: B 23 12 L	AWS A5.9: EQ309L	0.01	0.4	1.6	0.011	0.001	24.0	13.2	0.1	0.05	
Cromastrip 309LNb	EN ISO 14343: B 23 12 L Nb		0.02	0.4	2.1	0.014	0.001	23.8	12.5	0.2	0.05	Nb 0.6
For ESW												
Cromastrip 21.11 L	EN ISO 14343: B 21 11 L		0.02	0.3	1.7	0.014	0.001	21.2	11.2	0.1	0.03	
Cromastrip 21.13.3 L			0.01	0.4	1.7	0.017	0.001	20.3	14.3	2.8	0.04	
Cromastrip 21.11 LNb	EN ISO 14343: B 21 11 L Nb		0.01	0.3	1.7	0.015	0.001	21.3	11.1	0.1	0.05	Nb 0.6
Nickel base str	ips		С	Si	Mn	Р	S	Cr	Ni	Мо	N	Other
Cromastrip NiCrMo-3	EN ISO 18274: Ni6625	AWS A5.14: EQNiCrMo-3	0.05	0.1	0.3	0.011	0.002	22.0	Bal.	9.0	0.05	Nb 3.5 Fe 0.4
Cromastrip NiCr-3	EN ISO 18274: Ni6082	AWS A5.14: EQNiCr-3	0.05	0.2	3.0	0.013	0.002	22.0	Bal.	0.1	0.05	Nb 2.5 Fe <1.0

Flux selection by SDX solid wire

SDX solid wire	SWX 110	SWX 120	SWX 130	SWX 135	SWX 140	SWX 150
SDX S2Si-EM12K	F7A4-EM12K	F7A6-EM12K	F7A4-EM12K	F7A4-EM12K	F7A6-EM12K	F7A6-EM12K
SDX EM13K-S	F7A4-EM13K	F7A4-EM13K			F7A4-EM13K	F7A4-EM13K
SDX S3Si-EH12K	F7A6-EH12K		F7A6-EH12K			F7A8-EH12K
SDX S3Si-EH12K	F7P6-EH12K					F7P8-EH12K
SDX S2Mo-EA2	F7A4-EA2-A4	F7A6-EA2-A4	F7A4-EA2-A4	F7A4-EA2-A4	F7A6-EA2-A4	F7A6-EA2-A2
SDX S2Mo-EA2	F7P4-EA2-A4	F7P6-EA2-A4	F7P4-EA2-A4	F7P4-EA2-A4	F7P6-EA2-A4	F7P6-EA2-A2
SDX CrMo1-EB2R						F8P2-EB2R-B2
SDX CrMo2-EB3R						F8P0-EB3R-B3
SDX S2Ni1-ENi1						F7A8-ENi1-N1
SDX S2Ni1-ENi1						F7P8-ENi1-N1
SDX S2Ni2-ENi2						F8A10-ENi2-Ni2
SDX S2Ni2-ENi2						F8P10-ENi2-Ni2
SDX S3Ni1Mo0.2-ENi5	F8A6-ENi5-Ni5					F8A8-ENi5-Ni5
SDX S3Ni1Mo0.2-ENi5						F8P6-ENi5-Ni5
SDX S3Ni1Mo-EF3						F10A8-EF3-F3

Flux selection by SubCOR cored wire

SubCOR EM12K-S F7A4-EC1 F7A6-EC1	SubCOR cored wire	SWX 110	SWX 120	SWX 130	SWX 135	SWX 140	SWX 150
SubCOR EM13K-S F7P6-EC1 F6P8-EC1 F7P6-EC1 F7P6-EC1 F7P6-EC1 F6P8-EC1 SubCOR EM13K-S MOD F7A6-EC1 F7A8-EC1 F7A6-EC1 F7A6-EC1 F7A8-EC1 F7A8-EC1 F7P8-EC1 F7P8-EC1 <td>SubCOR EM12K-S</td> <td>F7A4-EC1</td> <td>F7A6-EC1</td> <td>F7A6-EC1</td> <td>F7A4-EC1</td> <td>F7A6-EC1</td> <td>F7A4-EC1</td>	SubCOR EM12K-S	F7A4-EC1	F7A6-EC1	F7A6-EC1	F7A4-EC1	F7A6-EC1	F7A4-EC1
SubCOR EM13K-S MOD F7A6-EC1 F7A8-EC1 F7A6-EC1 F7A6-EC1 F7A6-EC1 F7A8-EC1 F7A8-EC1 <td>SubCOR EM13K-S</td> <td>F7A6-EC1</td> <td>F7A8-EC1</td> <td>F7A6-EC1</td> <td>F7A6-EC1</td> <td>F7A8-EC1</td> <td>F7A8-EC1</td>	SubCOR EM13K-S	F7A6-EC1	F7A8-EC1	F7A6-EC1	F7A6-EC1	F7A8-EC1	F7A8-EC1
SubCOR EM13K-S MOD F7P6-EC1 F7P8-EC1 F7P8-EC1 <td>SubCOR EM13K-S</td> <td>F7P6-EC1</td> <td>F6P8-EC1</td> <td>F7P6-EC1</td> <td>F7P6-EC1</td> <td></td> <td>F6P8-EC1</td>	SubCOR EM13K-S	F7P6-EC1	F6P8-EC1	F7P6-EC1	F7P6-EC1		F6P8-EC1
SubCOR B2-S F9P2-ECB2-B2 SubCOR B3-S F9P2-ECB3-B3 SubCOR 92-S F8A10-ECM1-M1 F8A10-ECM1-M1 F8A10-ECM2-M2 SubCOR 92-S F8P8-ECM1-M1 F8P8-ECM1-M1 F8P8-ECM2-M2 SubCOR F2-S F10A10-ECF2-F2 SubCOR 100F3-S F10A10-ECF3-F3 F10A10-ECF3-F3 SubCOR 100F3-S F10P10-ECF3-F3 F10P10-ECF3-F3 SubCOR 120-S F11A10-ECM4-M4 SubCOR Ni1-S F7A8-ECNi1-Ni1	SubCOR EM13K-S MOD	F7A6-EC1	F7A8-EC1	F7A6-EC1	F7A6-EC1	F7A10-EC1	F7A8-EC1
SubCOR B3-S F9P2-ECB3-B3 SubCOR 92-S F8A10-ECM1-M1 F8A10-ECM2-M2 SubCOR 92-S F8P8-ECM1-M1 F8P8-ECM2-M2 SubCOR F2-S F10A10-ECF2-F2 SubCOR F2-S F10P10-ECF2-F2 SubCOR 100F3-S F10A10-ECF3-F3 F10A10-ECF3-F3 SubCOR 100F3-S F10P10-ECF3-F3 F10P10-ECF3-F3 SubCOR 120-S F11A10-ECM4-M4 SubCOR Ni1-S F7A8-ECNi1-Ni1	SubCOR EM13K-S MOD	F7P6-EC1	F7P8-EC1	F7P8-EC1	F7P8-EC1	F7P8-EC1	F7P8-EC1
SubCOR 92-S F8A10-ECM1-M1 F8A10-ECM1-M1 F8A10-ECM2-M2 SubCOR 92-S F8P8-ECM1-M1 F8P8-ECM2-M2 SubCOR F2-S F10A10-ECF2-F2 SubCOR F2-S F10P10-ECF2-F2 SubCOR 100F3-S F10A10-ECF3-F3 F10A10-ECF3-F3 SubCOR 100F3-S F10P10-ECF3-F3 F10P10-ECF3-F3 SubCOR 120-S F11A10-ECM4-M4 SubCOR Ni1-S F7A8-ECNi1-Ni1	SubCOR B2-S						F9P2-ECB2-B2
SubCOR 92-S F8P8-ECM1-M1 F8P8-ECM2-M2 SubCOR F2-S F10A10-ECF2-F2 SubCOR F2-S F10P10-ECF2-F2 SubCOR 100F3-S F10A10-ECF3-F3 F10A10-ECF3-F3 SubCOR 100F3-S F10P8-ECF3-F3 F10P10-ECF3-F3 SubCOR 120-S F11A10-ECM4-M4 SubCOR Ni1-S F7A8-ECNi1-Ni1	SubCOR B3-S						F9P2-ECB3-B3
SubCOR F2-S F10A10-ECF2-F2 SubCOR F2-S F10P10-ECF2-F2 SubCOR 100F3-S F10A10-ECF3-F3 F10A10-ECF3-F3 SubCOR 100F3-S F10P10-ECF3-F3 F10P10-ECF3-F3 SubCOR 120-S F11A10-ECM4-M4 SubCOR Ni1-S F7A8-ECNi1-Ni1	SubCOR 92-S		F8A10-ECM1-M1			F8A10-ECM1-M1	F8A10-ECM2-M2
SubCOR F2-S F10P10-ECF2-F2 SubCOR 100F3-S F10A10-ECF3-F3 F10A10-ECF3-F3 SubCOR 100F3-S F10P8-ECF3-F3 F10P10-ECF3-F3 SubCOR 120-S F11A10-ECM4-M4 SubCOR Ni1-S F7A8-ECNi1-Ni1	SubCOR 92-S		F8P8-ECM1-M1			F8P8-ECM1-M1	F8P8-ECM2-M2
SubCOR 100F3-S F10A10-ECF3-F3 F10A10-ECF3-F3 SubCOR 100F3-S F10P8-ECF3-F3 F10P10-ECF3-F3 SubCOR 120-S F11A10-ECM4-M4 SubCOR Ni1-S F7A8-ECNi1-Ni1	SubCOR F2-S						F10A10-ECF2-F2
SubCOR 100F3-S F10P8-ECF3-F3 F10P10-ECF3-F3 SubCOR 120-S F11A10-ECM4-M4 SubCOR Ni1-S F7A8-ECNi1-Ni1	SubCOR F2-S						F10P10-ECF2-F2
SubCOR 120-S F11A10-ECM4-M4 SubCOR Ni1-S F7A8-ECNi1-Ni1	SubCOR 100F3-S					F10A10-ECF3-F3	F10A10-ECF3-F3
SubCOR Ni1-S F7A8-ECNi1-Ni1	SubCOR 100F3-S					F10P8-ECF3-F3	F10P10-ECF3-F3
	SubCOR 120-S						F11A10-ECM4-M4
SubCOR Ni1-S F7P10-ECNi1-Ni1	SubCOR Ni1-S						F7A8-ECNi1-Ni1
	SubCOR Ni1-S						F7P10-ECNi1-Ni1
SubCOR W-S F7A6-ECW	SubCOR W-S						F7A6-ECW

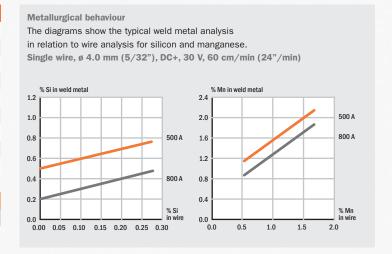
Flux Selection by AWS wire classification

Alloy	Electrode/Flux	Electrode Trade Name			F	lux		
	Classification	Tradename	SWX 110	SWX 120	SWX 130	SWX 135	SWX 140	SWX 150
Carbo	n steel solid wire e	lectrodes AWS A5.17						
	F7A4-EM12K	SDX S2Si-EM12K	~		~	~		
	F7A4-EM13K	SDX EM13K	•	~	•	<u> </u>	~	~
	F7A6-EM12K	SDX S2Si-EM12K	•	· ·			•	~
	F7A6-EH12K	SDX S3Si-EH12K	~	•	~		•	•
	F7P6-EH12K	SDX S3Si-EH12K	~		•			
	F7A8-EH12K	SDX S3Si-EH12K	•					~
	F7P8-EH12K	SDX S3Si-EH12K						· ·
Carbo	n steel metal-cored	l (composite) electrodes	AWS A5.1	7				•
	F6P8-EC1	SubCOR EM13K-S		~			~	~
	F7A4-EC1	SubCOR EM12K-S	~	<u> </u>		~	<u> </u>	· ·
	F7A6-EC1	SubCOR EM12K-S	•	~	~	•	~	•
		SubCOR EM13K-S	~	•	•	~	<u> </u>	
		SubCOR EM13K-S MOD	· ·		~	· ·		
	F7P6-EC1	SubCOR EM13K-S	•		•	· ·		
	0 201	SubCOR EM13K-S MOD	· ·		•	•		
	F7A8-EC1	SubCOR EM13K-S	▼	~			~	~
	17710 201	SubCOR EM13K-S MOD		~			•	· ·
	F7P8-EC1	SubCOR EM13K-S MOD		~	~	~	~	~
	F7A10-EC1	SubCOR EM13K-S MOD		•	•	•	~	•
Low-al		rodes AWS A5.23						
LOW al	F7A4-EA2-A4	SDX S2Mo-EA2	~		~	~		
	F7P4-EA2-A4	SDX S2Mo-EA2	~		~	~		
	F7A6-EA2-A4	SDX S2Mo-EA2	•		•	•	~	
A2	F7A6-EA2-A2	SDX S2Mo-EA2		~			~	
	F7P6-EA2-A4	SDX S2Mo-EA2						✓
	F7P6-EA2-A2	SDX S2Mo-EA2		~			~	
	F7A8-ENi1-Ni1	SDX S2Ni0-EA2						<u> </u>
	F7P8-ENi1-Ni1	SDX S2Ni1-ENi1						
	F8A6-ENi5-Ni5	SDX S3Ni1Mo0.2-ENi5						✓
Ni	F8P6-ENi5-Ni5	SDX S3Ni1Mo0.2-ENi5	~					
	F8A8-ENi5-Ni5	SDX S3Ni1Mo0.2-ENi5						~
	F8A10-ENi2-Ni2	SDX S2Ni2-ENi2						∀
	F8P10-ENi2-Ni2	SDX S2Ni2-ENi2						•
	F8P0-EB3R-B3	SDX CrMo2-EB3R						•
В	F8P2-EB2R-B2	SDX CrMo1-EB2R						•
F	F10A8-EF3-F3	SDX S3Ni1Mo-EF3						<u> </u>
		omposite) electrodes A	WS 45 23					•
W	F7A6-ECW-W	SubCOR W-S	110-A0.20					
	F7A8-ECNi1-Ni1	SubCOR N1-S						<u> </u>
Ni	F7P10-ECNi1-Ni1	SubCOR N1-S						*
	F8P8-ECM1-M1	SubCOR 92-S		~			~	<u> </u>
M1	F8A10-ECM1-M1	SubCOR 92-S		· ·			•	*
	F9P2-ECB2-B2	SubCOR B2-S		▼			<u> </u>	<u> </u>
В	F9P3-ECB3-B3	SubCOR B3-S						· ·
	F10P8-ECF3-F3	SubCOR 100F3-S					~	▼
	F10A10-ECF3-F3	SubCOR 100F3-S					· ·	~
F	F10P10-ECF3-F3	SubCOR 100F3-S					▼	→
-	F10A10-ECF2-F2	SubCOR F2-S						· ·
	F10P10-ECF2-F2	SubCOR F2-S						▼
M4	F11A10-ECM4-M4	SubCOR 120-S						·

EN ISO 14174: S A AB 1 67 AC H5

Flux /wire combinations for the submerged arc welding of non-and low-alloyed steels

Description


Hobart SWX 110 is a versatile and universally applied agglomerated welding flux. It has a carefully chosen aluminate-basic formulation - with a basicity between neutral and basic - providing a set of welding characteristics that makes the flux suited for a wide range of submerged arc welding applications in a variety of industries. It combines high travel speeds and excellent slag detachability with good low-temperature impact toughness down to -40°C (-40°F). Suited for single- and multi-run welding with smooth weld bead appearance and self detaching slag. It has a wide parameter box and performs equally well in single-wire, twin- and tandem welding, making it the perfect choice for productive welding of heavy sections. All of this makes SWX 110 an excellent multi-application flux

on the shop floor. SWX 110 can be used with a range of wires to cover mild steel and medium tensile fine-grained steel. SWX 110 is applied in general construction, machine and heavy equipment building, pressure vessel fabrication, shipbuilding and water and sewage pipes. Typical shipbuilding applications are the single- or double-sided welding of ship panels. Use of the flux in combination with Hobart cored wires offers further opportunities to improve weld metal quality, making use of unique cored wire properties. The flux is delivered in Hobart humidity proof packaging - EAE bag or DoubleBag - eliminating the need to re-dry the flux.

- General construction
- Double jointing
- Heavy equipment
- Bridge building
- Shipbuilding
- Pressure vessels
- Heavy beams
- Tank building
- Water and sewage pipes

Flux characteristics	
Flux type	Aluminate-Basic
Basicity index	1.4 (Boniszewski)
Alloy transfer	Slightly Si and Mn alloying
Density	1.2 kg/litre
Grain size	0.2-1.6 mm /12-65 mesh
HDM	< 5 ml/100 g weld metal
Current	DC+/AC
Re-drying unopened bag	Not required
Re-drying opened bag	See storage and handling recommendations

Flux main components AL₂O₃ + MnO CaO + MgO SiO₂+ TiO₂ CaF₂ ~ 35% ~ 25% ~ 20% ~ 15%

Flux SWX 110	Flux SWX 110 - Classifications		Mech	anic	al pr	oper	ties													
With wire		EN ISO	AWS	Re/Rp0.2	Rm	A	CVN					YS	TS	Ε	CVN					
				MPa	MPa	%	J					ksi	ksi	%	ft-lbf					
							0°C	-20°C	-30°C	-40°C	-46°C				0°F	-20°F -	40°F	-60°F	-80°F -	-100°F
SDX EM13K	AW		A5.17: F7A4-EM13K									75	87	28				22		
SDX S2	AW	14171-A: S 38 4 AB S2		420	500	26	130	110		65										
SDX S2Si-EM12K	AW	14171-A: S 38 4 AB S2Si	A5.17: F7A4-EM12K	420	500	26	130	100		60		71	83	29			48	35		
SDX S3Si-EH12K*	AW	14171-A: S 42 4 AB S3Si	A5.17: F7A6-EH12K	450	560	28		110		65	50	76	88	27				54	38	
	SR1		A5.17: F7P6-EH12K	440	550	28		100		55	40	67	83	28					58	29
SDX S2Mo-EA2	AW	14171-A: S 46 2 AB S2Mo	A5.23: F7A4-EA2-A4	510	590	24	90	70		50		80	90	26			58	33		
	SR1		A5.23: F7P4-EA2-A4	470	560	24	70	40				74	86	27			49	33		
	TR	14171-A: S 4T 2 AB S2Mo						50												
SDX S3Ni1Mo0.2-ENi5	AW	14171-A: S 50 4 AB S3Ni1Mo0.2	A5.23: F8A6-ENi5-Ni5	570	640	24		90	75	65	40	88	97	25			63	37		
SDX S2Ni1Cu	AW	14171-A: S 46 3 AB S2Ni1Cu		485	570	26		70	55											
SubCOR EM12K-S	AW		A5.17: F7A4-EC1									60	71	30			45			
SubCOR EM13K-S	AW		A5.17: F7A6-EC1									64	73	28					97	75
	SR ¹		A5.17: F7P6-EC1									64	77	32					264	127
SubCOR EM13K-S MOD	AW		A5.17: F7A6-EC1									76	84	29					115	50
	SR ¹		A5.17: F7P6-EC1									68	80	31			143		105	
SubCOR SL 731	AW	14171-A: S 46 4 AB T3		490	600	29		150		115										
	SR ¹			490	600	29		150		115										
SubCOR SL 281 Cr	AW	14171-A: S 46 4 AB TZ		490	590	25		100		80										
		SR: stress relieved, all weld metal. I				acking.						I								

SWX 110 (continued)

EN ISO 14174: S A AB 1 67 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

mical c	omposi	tion all	weld m	etal, ty	pical va	lues
%C	%Si	%Mn	%Мо	%Ni	%Cu	%Cr
0.06	0.3	1.2				
0.06	0.3	1.2				
0.06	0.5	1.3				
0.07	0.5	1.9				
0.09	0.25	1.4	0.2	0.9		
0.08	0.4	1.3		0.7	0.5	
0.06	0.3	1.3	0.5			
0.05	0.2	1.2				
0.06	0.3	1.2				
0.07	0.4	1.3				
0.05	0.3	1.5				
0.12	0.6	1.3		0.6	0.5	0.5
	%C 0.06 0.06 0.07 0.09 0.08 0.06 0.05 0.06	%C %Si 0.06 0.3 0.06 0.3 0.06 0.5 0.07 0.5 0.09 0.25 0.08 0.4 0.06 0.3 0.05 0.2 0.06 0.3 0.07 0.4 0.05 0.3	%C %Si %Mn 0.06 0.3 1.2 0.06 0.3 1.2 0.06 0.5 1.3 0.07 0.5 1.9 0.09 0.25 1.4 0.08 0.4 1.3 0.06 0.3 1.3 0.05 0.2 1.2 0.06 0.3 1.2 0.07 0.4 1.3 0.05 0.3 1.5	%C %Si %Mn %Mo 0.06 0.3 1.2 0.06 0.3 1.2 0.06 0.5 1.3 0.07 0.5 1.9 0.09 0.25 1.4 0.2 0.08 0.4 1.3 0.5 0.05 0.2 1.2 0.06 0.06 0.3 1.2 0.07 0.07 0.4 1.3 0.05 0.3 1.5	%C %Si %Mn %Mo %Ni 0.06 0.3 1.2 0.06 0.5 1.3 0.07 0.5 1.9 0.09 0.25 1.4 0.2 0.9 0.08 0.4 1.3 0.7 0.06 0.3 1.3 0.5 0.05 0.2 1.2 0.07 0.4 1.3 0.05 0.3 1.5	0.06 0.3 1.2 0.06 0.3 1.2 0.06 0.5 1.3 0.07 0.5 1.9 0.09 0.25 1.4 0.2 0.9 0.08 0.4 1.3 0.7 0.5 0.06 0.3 1.3 0.5 0.05 0.2 1.2 0.07 0.4 1.3 0.05 0.3 1.5

Materials to be weld	ed		
Steel group	Typical examples of steel types	Impact requirement ≥47 J (≥20 ft-lbf)	Flux SWX 110 with wire:
Normal strength steel			
Rel ≤ 355 MPa	S235JR, S275JR, A106 Gr. B, A333 Gr. 6, P235GH, S275J0, P295GH	-20°C	SDX S2
		-40°C	SDX S2, SDX S2Si-EM12K
Rel ≥ 355 MPa	S420N, S460ML, P420ML2, S420MCD, S420G2+M, X60, L450	-20°C	SDX S2Mo-EA2
		-40°C	SDX S2, SDX S2Si-EM12K,
TS > 58 ksi	A36, A709 Gr. 36,	-40°F	SubCOR EM12K-S
		-100°F	SubCOR EM13K-S, SubCOR EM13K-S MOD
TS > 65 ksi	A572 Gr.50, A709 Gr. 50, A709 Gr. 50S, A992	-40°F	SubCOR EM12K-S
		-100°F	SubCOR EM13K-S, SubCOR EM13K-S MOD
TS > 70 ksi	A588, A516 Gr.70	-40°F	SubCOR EM12K-S
		-100°F	SubCOR EM13K-S, SubCOR EM13K-S MOD
High strength steel			
Rel ≥ 420 MPa	S420N, S460ML, P420ML2, S420MCD, S420G2+M, X60, L450	-20°C	SDX S2Mo-EA2, SDX S2Mo-EA2
		-40°C	SDX S3Si-EH12K, SubCOR SL 731
Rel ≥ 460 MPa	S460M, S460ML, S460ML2, S460MCD, S460G2+M, X65, L450	-20°C	SDX S2Mo-EA2
		-40°C	SubCOR SL 731
Rel ≥ 500 MPa	S500QL, S500QL1, P500QL1, P500QL2, X70, S500G2+M	-40°C	SDX S3Ni1Mo0.2-ENi5
Shipbuilding steel			
	A to D, AH36 to EH36	-20°C	SDX S2Mo-EA2
		-40°C	SDX S2, SDX S2Si-EM12K
			SDX S3Si-EH12K, SubCOR SL 731
Weather resistant steel			
Rel ≤ 355	S235JOW, S355J2WP, S355J2G2W, COR-TEN, A242-type1, A588	-20°C	SDX S2Ni1Cu, SubCOR SL 281 Cr

Approvals			
With wire	CE	сwв	TÜV
SDX S2	•		~
SDX S2Si-EM12K	~	F49A4-EM12K*	~
SDX S2Mo-EA2	~	F8A6-EA2-A4*	~
SDX S3Si-EH12K	~	F49A6-EH12K*	~
SubCOR EM13K-S Mod	~	F49A6-EC1*	~
SubCOR SL 731	~		
SubCOR SL 281 Cr	~		
For the complete approva or contact the ITW Weldin			ta Shee

Packaging data		
Flux unit net weight	Kg	Lbs
Aluminium/PE Bag EAE*	25	55
DoubleBag	1000	2200
*EAE Excess Air Evacuation		

EN ISO 14174: S A AB 1 57 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Description

Hobart SWX 120 is specifically designed for the wind tower manufacturing industry where high integrity longitudinal and circumferential welds are the challenge and productive welding a prerequisite. The formulation of this aluminatebasic flux has been adapted towards a higher basicity while maintaining the good welding characteristics of a lower basicity flux. The result is a "production" flux that yields remarkably good low-temperature impact toughness down to -50°C (-58°F), using SDX S2 or SDX S2Si-EM12K welding wires. This flux guarantees uniform chemistry and mechanical properties throughout the heavy, multi-layer welds that are familiar to this industry. SWX 120 has a high current carrying capacity and allows high travel speeds. The slag is easily removed

from the first layers in commonly applied narrow Y-joints and self-detaching in subsequent filler and capping layers. Very well suited for single, twin, tandem and tandem-twin wire welding offering higher welding productivity and increased efficiency. Other industries with similar requirements, such as pressure vessel fabrication and general construction, will benefit equally well from this outstanding welding flux. Use of the flux in combination with Hobart cored wires offers further opportunities to improve weld metal quality, making use of unique cored wire properties.

The flux is delivered in Hobart humidity proof packaging - EAE bag or DoubleBag - eliminating the need to re-dry the flux.

- Wind towers
- Pressure vessels
- General construction
- Tank building

Aluminate-Basic
1.9 (Boniszewski)
Slightly Mn alloying
~1.2 kg/litre
0.2-1.6 mm /12-65 mesh
< 5 ml/100 g weld metal
DC+/AC
Not required
See storage and handling recommendations

Flux main components AL₂O₃ + MnO CaO + MgO SiO₂ + TiO₂ CaF₂ ~ 35% ~ 25% ~ 20% ~ 20%

Metallurgical behaviour The diagrams show the typical weld metal analysis in relation to wire analysis for silicon and manganese. Single wire, ø 4.0 mm (5/32"), DC+, 30 V, 60 cm/min (24"/min) % Si in weld metal % Mn in weld meta 500 A 2.4 0.8 800 A 2.0 0.6 1.6 500 A 0.4 800 A 1.2 0.2 0.8 % Si 0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.0 2.0

Flux SWX 12	Flux SWX 120 - Classifications			Mechanical properties																
With wire		EN ISO	AWS	Re/Rp0.2	Rm	A	CVN					YS	TS	Ε	CVN					
				MPa	MPa	%	J					ksi	ksi	%	ft-lbf					
							-20°C	-40°C	-50°C	-60°C					0°F	-20°F	-40°F	-60°F	-80°F -	-100°F
SDX EM13K	AW		A5.17: F7A4-EM13K									77	87	29					40	
SDX S2	AW	14171-A: S 38 5 AB S2		420	500	26	120	95	70	45										
SDX S2Si-EM12K	AW	14171-A: S 38 5 AB S2Si	A5.17: F7A6-EM12K	430	510	26	130	100	75	45		66	78	27				76	68	
SDX S2Mo-EA2	AW	14171-A: S 46 4 AB S2Mo	A5.23: F7A6-EA2-A4	500	590	24	90	60				73	83	25				69		
	SR^1		A5.23: F7P6-EA2-A4	490	575	24	90	60	45			68	91	29				44	30	
	TR	14171-A: S 4T 3 AB S2Mo					65	40												
SDX S3Si-EH12K*	AW	14171-A: S 46 4 AB S3Si		490	580	27	120	80	50											
	SR ¹			480	570	27	110	70	45											
	TR	14171-A: S 3T 2 AB S3Si					55	30												29
SubCOR EM12K-S	AW		A5.17: F7A6-EC1									60	70	32				110		
SubCOR EM13K-S	AW		A5.17: F7A8-EC1									58	71	29					105	
	SR ¹		A5.17: F6P8-EC1									51	66	34					143	142
SubCOR EM13K-S MOD	AW		A5.17: F7A10-EC1									72	82	29					161	105
	SR ¹		A5.17: F7P8-EC1									67	80	29			221		134	
SubCOR 92-S	AW		A5.23: F8A10-ECM1-M1									79	93	26					85	52
	SR ²		A5.23: F8P8-ECM1-M1									71	84	27				103	77	
SubCOR SL 731**	AW	14171-A: S 46 4 AB T3	A5.23: F8A4-ECG	500	600	27	145	125		54		111	121	22					55	48
	SR ¹			480	580	26	140	120		50										
											'.									

AW: as welded, all weld metal. SR: stress relieved, all weld metal. TR: two-run. * Use with precaution. In certain applications, the manganese content may reach critical levels, leading to hot cracking. SR¹: 1150°F (620°C) / 1 h. SR²: 1135°F (605°C) / 1 h.** Depends on the type of solid wire used

SWX 120 (continued)

EN ISO 14174: S A AB 1 57 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Flux SWX 120 - Che	emical c	ompos	ition all	weld m	etal, ty	pical va
With wire	%C	%Si	%Mn	%Cr	%Ni	%Мо
SDX-EM13K	0.05	0.2	1.2			
SDX S2	0.07	0.2	1.4			
SDX S2Si-EM12K	0.07	0.3	1.4			
SDX S2Mo-EA2	0.07	0.2	1.4			0.5
SDX S3Si-EH12K	0.10	0.2	2.0			
SubCOR EM12K-S	0.05	0.2	1.2			
SubCOR EM13K-S	0.05	0.2	1.2			
SubCOR EM13K-S MOD	0.08	0.3	1.2			
SubCOR 92-S	0.08	0.2	1.3		1.6	0.2
SubCOR SL 731	0.06	0.5	2.1			

Materials to be wel	ded		
Steel group	Typical examples of steel types	Impact requirement ≥47 J (≥20 ft-lbf)	Flux SWX 120 with wire:
Normal strength steel			
Rel ≤ 355 MPa	S235JR, A106 Gr. B, A333 Gr. 6,P235GH, S275JO, S275JR, P295GH	-30°C	SDX S2Mo-EA2
		-50°C	SDX S2, SDX S2Si-EM12K
Rel ≥ 355 MPa	S355J2, S355N, P355NL1, L360, S355MCD, S355ML, P355GH	-20°C	SDX S3Si-EH12K
		-30°C	SDX S2Mo-EA2
		-50°C	SDX S2, SDX S2Si-EM12K
TS > 58 ksi	A36, A709 Gr. 36	-60°F	SubCOR EM12K-S
		-80°F	SubCOR EM13K-S
		-100°F	SubCOR EM13K-S MOD
TS > 65 ksi	A572 Gr. 50, A709 Gr. 50, A709 Gr. 50S, A992	-60°F	SubCOR EM12K-S
		-80°F	SubCOR EM13K-S
		-100°F	SubCOR EM13K-S MOD
High strength steel			
Rel ≥ 420 MPa	S420N, S460ML, P420ML2, S420MCD, S420G2+M, L450	-30°C	SDX S2Mo-EA2
		-40°C	SDX S3Si-EH12, SubCOR SL 731
Rel ≥ 460 MPa	S460M, S460ML, S460ML2, S460MCD, S460G2+M, L450	-30°C	SDX S2Mo-EA2
		-40°C	SDX S3Si-EH12, SubCOR SL 731
TS > 70 ksi	A588, A516 Gr. 70	-60°F	SubCOR EM12K-S
		-80°F	SubCOR EM13K-S
		-100°F	SubCOR EM13K-S MOD
Creep resistant steel			
0.5% Mo	P295GH, P355GH, 16Mo3, 17Mo3, 14Mo6	-30°C	SDX S2Mo-EA1

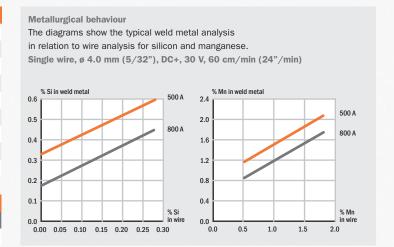
Approvals				
With wire	CE	CWB	DB	TÜV
SDX-EM13K				
SDX S2	~		~	~
SDX S2Si-EM12K	~	F49A4-EM12K*		
SDX S2Mo-EA2	~	F8A6-EA2-A4*		~
SDX S3Si-EH12K		F49A6-EH12K*		
SubCOR EM13K-S MOD		F49A6-EC1		
For the complete approve contact the ITW Welding			heet or	

Packaging data		
Flux unit net weight	Kg	Lbs
Aluminium/PE Bag EAE*	25	55
DoubleBag	1000	2200
*EAE Excess Air Evacuation		

EN ISO 14174: S A AB 1 67 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Description


HOBART SWX 130 is the welding flux that answers the call from longitudinal pipe mill manufacturers for increased welding speed and good mechanical properties in two-run welding. Thanks to its high current carrying capacity, it is very well suited for multi-wire welding with up to five wires. At high welding speeds, it produces the desired flat and wide bead profile with absence of peaks, which provides savings in pipe coating operations.

Slag is self-detaching. With the right combination of wires, steel grades up to X100 can be welded with matching mechanical properties. The flux is delivered in Hobart humidity proof packaging - EAE bag or DoubleBag - eliminating the need to re-dry the flux.

• Longitudinal pipe mills

Flux characteristics	
Flux type	Aluminate-Basic
Basicity index	1.5 (Boniszewski)
Alloy transfer	Slightly Si and Mn alloying
Density	1.2 kg/litre
Grain size	0.2-2.0 mm /10-65 mesh
HDM	< 5 ml/100 g weld metal
Current	DC+/AC
Re-drying unopened bag	Not required
Re-drying opened bag	See storage and handling recommendations

Flux main components AL₂O₃ + MnO CaO + MgO SiO₂+ TiO₂ CaF₂ ~ 30% ~ 25% ~ 20% ~ 15%

Flux SWX 130) - C	lassifications		Mech	anic	al pr	roper	ties												
With wire		EN ISO	AWS	Re/Rp0.2		A	CVN					YS	TS	Ε	CVN					
				MPa	MPa	%	J					ksi	ksi	%	ft-lbf					
							0°C	-20°C	-30°C	-40°C	-50°C				0°F	-20°F	-40°F	-60°F	-80°F -	-100°F
SDX S2	AW	14171-A: S 38 4 AB S2		430	520	27	110	75		60										
SDX S2Si-EM12K	AW	14171-A: S 38 4 AB S2Si	A5.17: F7A4-EM12K	430	520	27	100	70		50		69	82	27			23			
SDX S3Si-EH12K	AW	14171-A: S 46 6 AB S3Si	A5.17: F7A6-EH12K	490	550	29						81	91	27					46	
SDX S2Mo-EA2	AW	14171-A: S 46 2 AB S2Mo	A5.23: F7A4-EA2-A4	520	590	24	100	70		40		80	90	27			39			
SDX S2Mo-EA2	SR ¹		A5.23: F7P4-EA2-A4									76	88	28			32			
SDX S3Mo-EA4	AW	14171-A: S 50 2 AB S3Mo		580	670	23		55	40											
SubCOR EM12K-S	AW		A5.17: F7A6-EC1									60	71	29				84		
SubCOR EM13K-S	AW		A5.17: F7A6-EC1									65	77	31				70	53	
	SR1		A5.17: F7P6-EC1									58	72	33					84	69
SubCOR EM13K-S MOD	AW		A5.17: F7A6-EC1									77	87	27					50	
	SR ¹		A5.17: F7P8-EC1									68	83	29			102		47	
Mechanical proper	ties	of two-run pipe joint (high (dilution)																	
SDX S2Mo-EA2	TR			480	550	23		100		80	50									
SDX S3Mo-EA4	TR			510	590	20		70												
SDX S3TiB	TR			560	700	20				45										
SDX S3MoTiB	TR			630	700	25		200		180	120									
SubCOR SL 735-1W-5W*	TR			480	600	24		60		50										
		welds in the two run technique dep wire used. SR¹: PWHT 1150°F (62		osition of the	e base m	aterial.	. AW: As	welded,	all weld	metal.	TR: Two Run									

SWX 130 (continued)

EN ISO 14174: S A AB 1 67 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Flux SWX 130 - Che	mical c	omposi	tion all	weld me	etal, typi	ical values
With wire	% C	%Si	%Mn	%Mo	%Ti	%В
SDX S2	0.06	0.2	1.3			
SDX S2Si-EM12K	0.06	0.3	1.3			
SDX S3Si-EH12K	0.08	0.3	1.6			
SDX S2Mo-EA2	0.05	0.4	1.4	0.5		
SDX S3Mo-EA4	0.08	0.4	1.6	0.5		
SubCOR EM12K-S	0.05	0.2	1.2			
SubCOR EM13K-S	0.06	0.4	1.2			
SubCOR EM13K-S MOD	0.06	0.4	1.1			
Weld metal analyses of tw	o-run pipe	joint (hig	gh dilution))		
SDX S3TiB	0.06	0.5	1.6		0.024	0.0024
SDX S3MoTiB	0.06	0.5	1.4	0.3	0.022	0.0024
SubCOR SL 735-1W-5W	Depend	ds on the	type of soli	d wire used	d.	

Materials to be wel	lded		
Steel group	Typical examples of steel types	Impact requirement ≥47 J (≥20 ft-lbf)	Flux SWX 130 with wire:
Normal strength steel			
Rel ≤ 355 MPa	X42, X46, L235, L265, L295, L320	-40°C	SDX S2Mo-EA2
		-50°C	SDX S3MoTiB
Rel ≥ 355 MPa	X52, L355, L360, L385L, 390, L415	-40°C	SDX S2Mo-EA2
		-50°C	SDX S3MoTiB
TS > 58 ksi	A36, A709 Gr. 36,	-60°F	SubCOR EM12K-S
		-80°F	SubCOR EM13K-S, SubCOR EM13K-S MOD
TS > 65 ksi	A572 Gr. 50, A709 Gr. 50, A709 Gr. 50S, A992	-60°F	SubCOR EM12K-S
		-80°F	SubCOR EM13K-S, SubCOR EM13K-S MOD
High strength steel			
Rel ≥ 420 MPa	X56, X60, L445, L450	-40°C	SDX S2Mo-EA2
		-50°C	SDX S3MoTiB
Rel ≥ 460 MPa	X65, X70, X80	-20°C	SDX S3Mo-EA4, SubCOR SL 735-1W-5W
		-40°C	SDX S3TiB
		-50°C	SDX S3MoTiB
TS > 70 ksi	A588, A516 Gr. 70	-60°F	SubCOR EM12K-S
		-80°F	SubCOR EM13K-S, SubCOR EM13K-S MOD

Approvals		
With wire	CE	
SDX S2Mo-EA2	~	
For the complete approval contact the ITW Welding sa		e see Product Data Sheet or

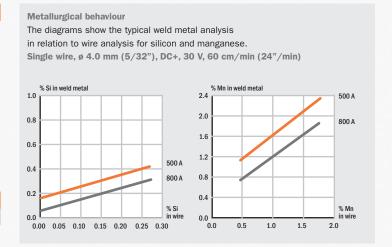
Packaging data		
Flux unit net weight	Kg	Lbs
Aluminium/PE Bag EAE*	25	55
DoubleBag	1000	2200
*EAE Excess Air Evacuation		

EN ISO 14174: S A AB 1 67 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Description

Hobart SWX 135 is an aluminate-basic flux specifically developed for spiral pipe mills. The flux is suited for two-run applications and can be used with systems with up to 3 wires. It gives flat welds with smooth wetting and absence of so called china hats. This weld appearance is cost saving in later coating operations.


* Depends on the type of solid wire used. SR 1 : PWHT 1150°F (620°C)/1 h.

It has a good current carrying capacity. Slag is self-detaching. The flux is delivered in Hobart humidity proof packaging - EAE bag or DoubleBag - eliminating the need to re-dry the flux.

· Spiral pipe mills

Flux characteristics Aluminate-Basic Flux type Basicity index 1.3 (Boniszewski) Alloy transfer Slightly Si and Mn alloying Density 1.2 kg/litre Grain size 0.2-2.0 mm /10-65 mesh HDM < 5 ml/100 g weld metal DC+/AC Current Re-drying unopened bag Not required See storage and handling recommendations Re-drying opened bag

Flux main components AL₂O₃ + MnO CaO + MgO SiO₂ + TiO₂ CaF₂ ~ 35% ~ 20% ~ 25% ~ 15%

Flux SWX 135	- C	lassifications		Mech	anica	al pr	oper	ties								
With wire		EN ISO	AWS	Re/Rp0.2 MPa	Rm MPa	A %	CVN			YS ksi	TS ksi	E %	CVN ft-lbf			
							0°C	-40°C	-50°C	KSI	KSI	70		-20°F -40°	F -60°F	-80°F -100°
SDX S2	AW	14171-A: S 38 4 AB S2		430	520	27	110	75	40							
SDX S2Si-EM12K	AW	14171-A: S 38 4 AB S2	A5.17: F7A4-EM12K	410	500	27	150	90	55	65	78	26		42		
SDX S2Mo-EA2	AW	14171-A: S 46 2 AB S2Mo	A5.23: F7A4-EA2-A4	510	590	23	90	45	30	71	83	24		43		
SDX S2Mo-EA2	SR1		A5.23: F7P4-EA2-A4							64	79	28		23		
SDX S3Mo-EA4	AW	14171-A: S 50 2 AB S3Mo		570	670	23	70	50								
SubCOR EM12K-S	AW		A5.17: F7A4-EC1							58	71	29		74		
SubCOR EM13K-S	AW		A5.17: F7A6-EC1							59	71	28				93
	SR1		A5.17: F7P6-EC1							51	66	34			50	
SubCOR EM13K-S MOD	AW		A5.17: F7A6-EC1							70	81	28			92	56
	SR1		A5.17: F7P8-EC1							62	77	30		94		65
Mechanical propert	ies d	of two-run pipe joint (high	dilution)													
SDX S2Mo-EA2	TR			480	560	23	60	35								
SDX S3Mo-EA4	TR			520	600	22	60	35								
SDX S3TiB	TR			560	700	20	120	80	60							
SDX S3MoTiB	TR			630	700	25	200	180	120							
SubCOR SL 735-1W-5W*	TR			500	580	24	150	100								

SWX 135 (continued)

EN ISO 14174: S A AB 1 67 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Flux SWX 135 - Che	mical c	omposi	ition all	weld m	etal, typi	cal values
With wire	%С	%Si	%Mn	%Mo	%Ti	%В
SDX S2	0.05	0.3	1.3			
SDX S2Si-EM12K	0.06	0.5	1.4			
SDX S2Mo-EA2	0.06	0.3	1.4	0.5		
SDX S3Mo-EA4	0.06	0.3	1.5	0.5		
SubCOR EM12K-S	0.06	0.3	1.2			
SubCOR EM13K-S	0.05	0.5	1.2			
SubCOR EM13K-S MOD	0.06	0.3	1.3			
Weld metal analyses of tw	o-run pipe	joint (hig	gh dilution)		
SDX S3TiB	0.06	0.5	1.6		0.024	0.0024
SDX S3MoTiB	0.06	0.5	1.4	0.3	0.022	0.0024
SubCOR SL 735-1W-5W	Depend	ds on the	type of soli	d wire use	ed.	

Materials to be w	velded		
Steel group	Typical examples of steel types	Impact requirement ≥47 J (≥20 ft-lbf)	Flux SWX 135 with wire:
Normal strength steel			
Rel ≤ 355 MPa	X42, X46, L235, L265, L295, L320	-40°C	SDX S2, SDX S2Si-EM12K
Rel ≥ 355 MPa	X52, L355, L360, L385L, 390, L415	-40°C	SDX S2, SDX S2Si-EM12K
TS > 58 ksi	A36, A709 Gr. 36,	-40°F	SubCOR EM12K-S
		-80°F	SubCOR EM13K-S, SubCOR EM13K-S MOD
TS > 65 ksi	A572 Gr. 50, A709 Gr. 50, A709 Gr. 50S, A992	-40°F	SubCOR EM12K-S
		-80°F	SubCOR EM13K-S, SubCOR EM13K-S MOD
High strength steel			
Rel ≥ 420 MPa	X56, X60, L445, L450	-20°C	SDX S2Mo-EA2
		-40°C	SDX S3TiB
		-50°C	SDX S3MoTiB
Rel ≥ 460 MPa	X65, X70, X80	-20°C	S2Mo-EA2
		-40°C	SDX S3TiB, SubCOR SL 735-1W-5W
		-50°C	SDX S3MoTiB
TS > 70ksi	A588, A516 Gr. 70	-40°F	SubCOR EM12K-S
		-80°F	SubCOR EM13K-S, SubCOR EM13K-S MOD

Approvals		
With wire	CE	
SDX S2	✓	
SDX S2Si-EM12K	✓	
SDX S2Mo-EA2	✓	
For the complete approva contact the ITW Welding s	list please see Product Data Sheet or ales office	

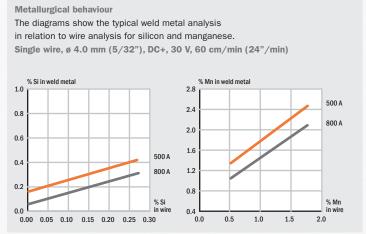
Packaging data		
Flux unit net weight	Kg	Lbs
Aluminium/PE Bag EAE*	25	55
DoubleBag	1000	2200
*EAE Excess Air Evacuation		

EN ISO 14174: S A FB 1 57 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Description

SWX 140 is a fluoride-basic flux that combines high welding productivity with good low-temperature impact toughness at -50°C using standard SDX solid wires or at -60°C using specially developed SubCOR wires. It is a multi-purpose flux, suited for multi-layer welds in medium thick and thick materials, but also for efficient two-run welding with multiple wire heads at high travel speed. It performs equally well in single-wire, twin- and tandem welding and features good slag release, even in welds with a high interpass temperature. These characteristics make SWX 140 a versatile "production" flux for a wide range of applications in offshore fabrication, more demanding shipbuilding and pressure vessel fabrication. It is also an excellent flux for double jointing, both onshore and offshore onboard of pipe laying barges.


An extra safety margin on low-temperature impact values can be obtained from SubCOR cored wires. SubCOR SL 840 B HC is intended for single-wire welding, whereas the micro-alloyed SubCOR SL 735 B-1W-5W series represents a range of wires developed for multi-wire welding with up to 5 wires. SWX 140 is also successfully used in hardfacing for the repair of worn rails and rollers, providing consistent weld hardness. A special application is the joining of CRA-clad pipes for aggressive fluids, where the weld in the host pipe needs to retain its toughness after a heat treatment at 1000 and 590°C.

The flux is delivered in Hobart humidity proof packaging - EAE bag or DoubleBag - eliminating the need to re-dry the flux.

- Offshore construction
- Demanding shipbuilding
- Double jointing
- Pressure vessels

Flux characteristics	
Flux type	Fluoride-Basic
Basicity index	2.0 (Boniszewski)
Alloy transfer	Slightly Mn alloying
Density	~ 1.2 kg/litre
Grain size	0.2-1.6 mm /12-65 mesh
HDM	< 5 ml/100 g weld metal
Current	DC+/AC
Re-drying unopened bag	Not required
Re-drying opened bag	See storage and handling recommendations

Flux SWX 140) - C	lassifications		Mech	anic	al pr	oper	ties											
With wire		EN ISO	AWS	Re/Rp0.2	Rm	A	CVN				YS	TS	E	CVN					
				MPa	MPa	%	ı				ksi	ksi	%	ft-lbf					
							-20°C	-40°C	-50°C	-60°C				0°F	-20°F	-40°F	-60°F	-80°F -	-100°F
SDX EM13K	AW		A5.17: F7A4-EM13K								77	87	29					40	
SDX S2	AW	14171-A: S 38 5 FB S2		420	500	26	120	95	70	45									
SDX S2Si-EM12K	AW	14171-A: S 38 5 FB S2Si	A5.17: F7A6-EM12K	430	510	26	130	100	75	45	66	78	27				76	68	
SDX S2Mo-EA2	AW	14171-A: S 46 4 FB S2Mo	A5.23: F7A6-EA2-A4	500	590	24	90	60			73	83	25				69		
	SR ¹		A5.23: F7P6-EA2-A4	490	575	24	90	60	45		68	91	29				44	30	
SubCOR EM12K-S	AW		A5.17: F7A6-EC1								60	70	32				110		
SubCOR EM13K-S	AW		A5.17: F7A8-EC1								58	71	29					105	
	SR1		A5.17: F6P8-EC1								51	66	34					143	142
SubCOR EM13K-S MOD	AW		A5.17: F7A10-EC1								72	82	29					161	105
	SR ¹		A5.17: F7P8-EC1								67	80	29			221		134	
SubCOR 92-S	AW		A5.23: F8A10-ECM1-M1								79	93	26					85	52
	SR ²		A5.23: F8P8-ECM1-M1								71	84	27				103	77	
SubCOR SL 735-1W-5W	AW	14171-A: S 46 4 FB T3		500	580	29	150	120											
SubCOR SL 840 HC	AW	14171-A: S 46 6 FB T3Ni1		520	570	30	140	120		100									
	SR ¹			520	570	30		140		120									
SubCOR SL 741	AW	26304: S 55 6 FB T3 Ni1Mo		560	650	18	100	80	70	60									
	SR ¹			510	560	20	100	80	70	60									
SubCOR 100F3-S	AW		A5.23: F10A10-ECF3-F3								101	109	24					57	44
	SR ¹		A5.23: F10P8-ECF3-F3								98	108	25					59	35
AW: As welded, all weld i		SR: stress relieved, all weld metal.		. SR ² :1125°	F (605°	C) / 1	h.												
			. ()//		,	-,, -													

SWX 140 (continued)

EN ISO 14174: S A FB 1 57 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Flux SWX 140 - Che	mical co	mposit	ion all v	veld me	tal, typi
With wire	%С	%Si	%Mn	%Ni	%Мо
SDX-EM13K	0.05	0.2	1.2		
SDX S2	0.07	0.2	1.4		
SDX S2Si-EM12K	0.07	0.3	1.4		
SDX S2Mo-EA2	0.07	0.2	1.4		0.5
SubCOR EM12K-S	0.05	0.2	1.2		
SubCOR EM13K-S	0.05	0.2	1.2		
SubCOR EM13K-S MOD	0.08	0.3	1.2		
SubCOR 92-S	0.08	0.2	1.3	1.6	0.2
SubCOR SL 735-1W-5W	0.05	0.3	1.4		
SubCOR SL 840 HC	0.10	0.3	1.4	0.9	
SubCOR SL 741	0.06	0.3	1.2	0.9	0.5
SubCOR 100F3-S	0.09	0.3	1.5	0.8	0.5

Materials to be we	ded		
Steel group	Typical examples of steel types	Impact requirement ≥47 J (≥20 ft-lbf)	Flux SWX 140 with wire:
Normal strength steel			
Rel ≤ 355 MPa	S235JR, A106 Gr. B, A333 Gr. 6,P235GH, S275J0,	-40°C	SDX S2Mo-EA2
	S275JR, P295GH	-50°C	SDX S2, SDX S2Si-EM12K
Rel ≥ 355 MPa	\$355J2, \$355N, P355NL1, X52, L360, \$355MCD,	-40°C	SDX S2Mo-EA2
	S355ML, P355GH	-50°C	SDX S2, SDX S2Si-EM12K
TS > 58 ksi	A36, A709 Gr. 36,	-60°F	SubCOR EM12K-S
		-100°F	SubCOR EM13K-S MOD
TS > 65ksi	A572 Gr. 50, A709 Gr. 50, A709 Gr. 50S, A992	-60°F	SubCOR EM12K-S
		-100°F	SubCOR EM13K-S MOD
High strength steel			
Rel ≥ 420 MPa	S420N, S460ML, P420ML2, S420MCD, S420G2+M,	-40°C	SDX S2Mo-EA2, SDX S3Si-EH12
	X60, L450		
Rel ≥ 460 MPa	S460M, S460ML, S460ML2, S460MCD, S460G2+M	-40°C	SDX S2 Mo-EA2, SDX S3Si-EH12, SubCOR SL 735-1W-5W
	X65, L450	-60°C	SubCOR SL 840 HC
Rel ≥ 500 MPa	S500Q, S500QL, S500QL1, P500QL1, P500QL2,	-50°C	SubCOR 741
	S500G2+M, S55Q, S550QL, S500QL1, X70, X75, X80	-60°C	SubCOR SL 840 HC
TS > 70ksi	A588, A516 Gr. 70	-60°F	SubCOR EM12K-S
		-100°F	SubCOR EM13K-S MOD
TS > 75ksi	A572 Gr. 60, A913 Gr. 60, A871 Gr. 60	-100°F	SubCOR 92-S
TS > 80ksi	A572 Gr. 65, A871 Gr. 65, A537 Class 2	-100°F	SubCOR 92S
TS > 85ksi	A710 Gr. A Class 3 ≤ 2"	-100°F	SubCOR 100F3-S
TS > 90ksi	A710 Gr. A Class 1 ≤ 3/4"	-100°F	SubCOR 100F3-S
TS > 100ksi	A514 >2 1/2"	-100°F	SubCOR 100F3-S
Creep resistant steel			
0.5% Mo	P295GH, P355GH, 16Mo3, 17Mo3, 14Mo6	-40°C	SDX S2Mo-EA1

Approvals								
With wire	CE							
SDX S2	✓							
SDX S2Si-EM12K	✓							
SDX S2Mo-EA2	✓							
For the complete approval list please see Product Data Sheet or contact the ITW Welding sales office								

Kg	Lbs
25	55
1000	2200
	25

EN ISO 14174: S A FB 1 55 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Description

Hobart SWX 150 is a high basicity, fluoride-basic agglomerated flux for low-temperature, high strength and creep resistant applications, including CTOD requirements. Its neutral character promotes a homogeneous weld chemistry and consistent mechanical properties throughout thick multi-layer welds. It produces low oxygen weld metal (~300ppm), resulting in excellent impact toughness down to -60°C and below. SWX 150 has a very good slag detachability, also in narrow gaps, along with smooth bead finish and tie-in. SWX 150 can be used in single- and multiple-wire operation and performs equally well on AC and DC+.

It is used for normal construction steel, high strength steel, low-temperature steel and creep resistant steel in demanding sectors such as offshore fabrication, pressure vessels and nuclear components. Use of the flux in combination with Hobart cored wires offers further opportunities to improve weld metal quality and productivity, making use of unique cored wire properties.


Typical CTOD test results with SDX S3Si-EH12K solid wire, tested at -20°C: 1.01, 1.01, 1.09 mm.

The flux is delivered in Hobart humidity proof EAE bag, eliminating the need to re-dry the flux.

- Offshore construction
- Offshore wind towers
- Civil construction
- Pressure vessels
- Nuclear applications
- Narrow gap welding
- Double-jointing
- High strength applications

Flux characteristics	
Flux type	Fluoride-basic
Basicity index	3.3 (Boniszewski)
Alloy transfer	None
Density	~ 1.1 kg/litre
Grain size	0.2-1.6 mm /12-65 mesh
HDM	< 5 ml/100 g weld metal
Current	DC+/AC
Re-drying unopened bag	Not required
Re-drying opened bag	See storage and handling recommendations

Flux main components AL₂O₃ + MnO CaO + MgO SiO₂+ TiO₂ CaF₂ ~ 20% ~ 35% ~ 15% ~ 25%

Flux SWX 150) - C	lassifications		Ме	chan	ical	prop	erties												
With wire		EN ISO	AWS	Re/Rp0.2	Rm	A	CVN					YS	TS	E	CVN					
				MPa	MPa	%	ļ ,					ksi	ksi	%	ft-lbf					
							0°C	-20°C -30°C	-40°C	-50°C	-60°C -70°C				0°F	-20°F	-40°F -			-100°F
SDX EM13K	AW		A5.17: F7A4-EM13K									68	74	27				42	28	
SDX S2Si-EM12K	AW	14171-A: S 38 5 FB S2Si	A5.17: F7A6-EM12K	420	500	22		130	85	65	35	68	77	31				90	27	
SDX S3Si-EH12K	AW	14171-A: S 46 6 FB S3Si	A5.17: F7A8-EH12K	490	550	29		140	115	80	60	74	83	31					142	122
	SR ¹		A5.17: F7P8-EH12K	410	500	29		140	115	80	60	65	80	31					219	129
SDX S4-EH14	AW	14171-A: S 50 4 FB S4		540	630	22		65	55	40										
	SR ¹			450	550	22		60	55	40										
SDX S2Mo-EA2	AW	14171-A: S 46 4 FB S2Mo	A5.23: F7A6-EA2-A2	485	570	23		75	55	40		76	84	27				106	44	
	SR1		A5.23: F7P6-EA2-A2	460	510	24		70	50	35		72	82	30				109	60	
SubCOR EM12K-S	AW		A5.17: F7A4-EC1									60	71	32			97			
SubCOR EM13K-S	AW		A5.17: F7A8-EC1									64	73	30					160	
	SR ¹		A5.17: F6P8-EC1									52	67	35						154
SubCOR EM13K-S MOD	AW		A5.17: F7A8-EC1									70	79	29						103
	SR1		A5.17: F7P8-EC1									65	78	32					36	
SubCOR SL 731	AW	14171: S 46 4 FB T3	A5.17: F8A6-EC1	490	600	29		140	110		80	112	122	22					55	36
	SR ¹			460	570	28		110	90		70									
SDX S3Ni1Mo0.2-ENi5	AW	14171-A: S 46 6 FB S2Ni1Mo0.2	A5.23: F8A8-ENi5-Ni5	510	590	29			125		75	82	90	27				146		
	SR ¹		A5.23: F8P6-ENi5-Ni5	500	590	28				70		77	89	28				134	100	
SDX S3Ni1Mo-EF3	AW	14171-A: S 62 6 FB S3Ni1Mo	A5.23: F10A8-EF3-F3	640	730	22		110	75	60	50	98	107	24					99	72
SDX S3Ni2.5CrMo	AW	26304: S 69 6 FB S3Ni2.5CrMo		710	800	18		95	75	65	55									
SubCOR 92-S	AW		A5.23: F8A10-ECM1-M1									78	88	26					91	78
	SR ²		A5.23: F8P8-ECM1-M1									76	88	27				123	106	

SWX 150 (continued)

EN ISO 14174: S A FB 1 55 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Flux SWX 15	0 - 0	Classifications		Me	chan	ical	prop	ertie	s													
With wire		EN ISO	AWS	Re/Rp0.2		A	CVN							YS	TS	Ε	CVN					
				MPa	MPa	%	J							ksi	ksi	%	ft-lbf					
							0°C	-20°C	-30°C	-40°C	-50°C	-60°C	-70°C				0°F	-20°F	-40°F	-60°F		-100°F
SubCOR F2-S	AW		A5.23: F10A10-ECF2-F2											95	104	23					86	58
	SR ¹		A5.23: F10P10-ECF2-F2											91	101	25					39	28
SubCOR 100F3-S	AW		A5.23: F10A10-ECF3-F3											101	109	24					57	44
	SR ¹		A5.23: F10P10-ECF3-F3											98	108	25					59	35
SubCOR 120-S	AW		A5.23: F11A10-ECM4-M4											111	118	23					77	52
SubCOR SL 741	AW	26304: S 55 6 FB T3 Ni1Mo		550	700	18				80		60										
SubCOR SL 742	AW	26304: S 69 6 FB T3 Ni2.5CrMo	A5.23: F11A8-ECF5-F5	720	820	20		145		125		100		112	122	22				34	33	
	SR ³	26304: S 69 6 FB T3 Ni2.5CrMo		700	790	20		135		115		70										
SubCor SL 745	AW	16304: S 89 4 FB T3Ni2.5Cr1Mo		920	1060	15				47												
SDX S2Ni1-ENi1	AW	14171-A: S 42 4 FB S2Ni1	A5.23: F7A8-ENi1-Ni1	440	530	25		130		65	45			70	80	29					135	108
	SR ¹		A5.23: F7P8-ENi1-Ni1	430	530	25		130		90	60	45		65	77	30					177	135
SDX S2Ni2-ENi2	AW	14171-A: S 46 7 FB S2Ni2	A5.23: F8A10-ENi2-Ni2	480	570	27		145		115	95	75	60	74	85	27					143	127
	SR ¹		A5.23: F8P10-ENi2-Ni2	480	580	27		145		115	90	60	40	70	83	28					149	138
SubCOR Ni1-S	AW		A5.23: F7A8-ECNi1-Ni1											61	73	26					104	
	SR ¹		A5.23: F7P10-ECNi1-Ni1											58	71	33					127	191
SubCOR W-S	AW		A5.23: F7A6-ECW-W											71	80	28			129	66		
SDX CrMo1-EB2R	SR ⁴	24598: S S CrMo1 FB	A5.23: F8P2-EB2R-B2	490	620	22		100	80					80	91	25		129	88			
SDX CrMo2-EB3R	SR ⁴	24598: S S CrMo2 FB	A5.23: F8P0-EB3R-B3	530	630	22		110	80					82	97	24	92	20				
SubCOR B2-S	SR ⁴		A5.23: F9P2-ECB2-B2											93	96	23		92	18			
SubCOR B3-S	SR ⁴		A5.23: F9P2-ECB3-B3											103	117	18		25				
SubCOR SL P1	SR ⁴	24598: ST Mo FB		480	560	22	220	200		180												
SubCOR SL P1 MOD	SR ⁴	24598: ST MoVFB		420	530	22	70	40														
SubCOR SL P11	SR ⁴	24598: ST CrMo1 FB		510	600	26		200		150												
SubCOR SL P12 MOD	SR ⁴	24598: ~S T CrMoV1 FB		540	630	17	+20°	C:60														
SubCOR SL P36	SR1	24598: STZFB		550	640	18	80	60		50												
SubCOR SL P22	SR ⁴	24598: S T CrMo2 FB		560	640	20	180															
SubCOR SL P24	SR ⁴	24598: STZFB		650	720	18	120	60														
SubCOR SL P5	SR ⁵	24598: S T CrMo5 FB		470	590	25		200		150												

 $AW: as \ welded, \ all \ weld \ metal. \ SR: \ tress \ relieved, \ all \ weld \ metal. \ SR: \ 1150°F (620°C) / 1 \ h. \ SR^2: \ 1125°F (600°C) / 1 \ h. \ SR^3: \ 1050°F (565°C) / 1 \ h. \ SR^5: \ 1275°F (690°C) / 1 \ h. \ SR^5: \ 1375°F (745°C) / 1 \ h. \ SR^5: \ 1050°F (565$

Flux SWV 150 Char	nical co	mnooiti	on all v	vold me	tal tun	ical val	100
Flux SWX 150 - Cher							
With wire	%C	%Si	%Mn	%Cr	%Ni	%Мо	% V
SDX EM13K	0.07	0.2	1.0				
SDX S2Si-EM12K	0.07	0.3	0.9				
SDX S3Si-EH12K	0.09	0.3	1.5				
SDX S4-EH14	0.01	0.15	1.9				
SDX S2Mo-EA2	0.07	0.2	0.9			0.5	
SDX S2Ni1-ENi1	0.07	0.2	0.9		0.9		
SDX S2Ni2-ENi2	0.08	0.2	1.0		2.1		
SDX S3Ni1Mo0.2-ENi5	0.09	0.25	1.4		0.9	0.2	
SDX S3Ni1Mo-EF3	0.09	0.2	1.5		0.9	0.5	
SDX S3Ni2.5CrMo	0.07	0.2	1.4	0.5	2.5	0.5	
SDX CrMo1-EB2R	0.07	0.3	0.9	1.1		0.5	
SDX CrMo2-EB3R	0.07	0.3	0.6	2.2		1.0	
SubCOR EM12K-S	0.05	0.2	0.9				
SubCOR EM13K-S	0.07	0.2	1.0				
SubCOR EM13K-S MOD	0.09	0.3	0.9				
SubCOR 92-S	0.05	0.2	1.0		1.6	0.2	
SubCOR F2-S	0.07	0.35	1.4		0.7	0.4	

SWX 150 (continued)

EN ISO 14174: S A FB 1 55 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Flux SWX 150 - Che	emical co	mposit	ion all v	veld me	etal, typ	ical valu	ies	
With wire	%С	%Si	%Mn	%Cr	%Ni	%Мо	% V	%Cu
SubCOR 100F3-S	0.09	0.3	1.5		0.8	0.5		
SubCOR 120-S	0.06	0.3	1.5	0.3	2.4	0.4		
SubCOR Ni1-S	0.05	0.2	1.0		1.6	0.2		
SubCOR W-S	0.03	0.4	0.6	0.5	0.5			0.4
SubCOR B2-S	0.07	0.4	0.4	1.2		0.5		
SubCOR B3-S	0.1	0.4	0.4	2.3		1.0		
SubCOR SL 731	0.08	0.6	1.7					
SubCOR SL 741	0.06	0.3	1.2		0.9	0.5		
SubCOR SL 742	0.07	0.35	1.6	0.4	2.1	0.4		
SubCor SL 745	0.08	0.4	1.6	1.0	2.2	0.5		
SubCOR SL P1	0.06	0.2	1.2			0.5		
SubCOR SL P1 MOD	0.05	0.3	1.0	0.4	0.2	0.55	0.3	
SubCOR SL P11	0.07	0.3	1.1	1.2		0.5		
SubCOR SL P12 MOD	0.10	0.5	0.9	1.1	0.3	1.2	0.25	
SubCOR SL P36	0.05	0.3	1.3			0.5		
SubCOR SL P22	0.09	0.3	1.1	2.3		1.1		
SubCOR SL P24	0.1	0.3	1.2	2.5		1.0	0.2	
SubCOR SL P5	0.05	0.4	1.1	5		0.6		

Materials to be	welded		
Steel group	Typical examples of steel types	Impact requirement ≥47 J (≥20 ft-lbf)	Flux SWX 150 with wire:
Normal strength ste	el		
Rel ≤ 355 MPa	S235JR, A106 Gr. B, A333 Gr. 6,P235GH, S275J0, S275JR	-50°C	SDX S2Si-EM12K
		-60°C	SDX S3Si-EH12K
Rel ≥ 355 MPa	S355J2, S355N, P355NL1, X52, L360, S355MCD, S355ML	-50°C	SDX S2Si-EM12K
		-60°C	SDX S3Si-EH12K
TS > 58 ksi	A36, A709 Gr. 36,	-40°F	SubCOR EM12K-S
		-80°F	SubCOR EM13K-S
		-100°F	SubCOR EM13K-S MOD
TS > 65ksi	A572 Gr. 50, A709 Gr. 50, A709 Gr. 50S, A992	-40°F	SubCOR EM12K-S
		-80°F	SubCOR EM13K-S
		-100°F	SubCOR EM13K-S MOD
High strength steel			
Rel ≥ 420 MPa	S420N, S460ML, P420ML2, S420MCD, S420G2+M, X60, L450	-40°C	SDX S2Mo-EA2, SDX S2Ni1-ENi1
		-60°C	SDX S3Si-EH12K
Rel ≥ 460 MPa	S460M, S460ML, S460ML2, S460MCD, S460G2+M, X65, L450	-40°C	SDX S2Mo-EA2, SubCOR SL 731
		-60°C	SDX S3Si-EH12K, SDX S2Ni1Mo0.2-ENi5
		-70°C	SDX S2Ni2-ENi2
Rel ≥ 500 MPa	S500QL, S500QL1, P500QL1, P500QL2, X70, S500G2+M,	-40°C	SDX S4-EH12
	B1 4NVE 500, X70, X80	-60°C	SubCOR SL 741
Rel ≥ 620 MPa	S550QL, NVE550, S600Q1, S620Q, S620QL, NVE620	-40°C	SDX S3Ni1.5CrMo
		-60°C	SDX S3Ni1Mo-EF3
Rel ≥ 690 MPa	S690Q, S690QL, S690QL1, NVE690, X100	-60°C	SubCOR SL 742, SDX S3Ni2.5CrMo
Rel ≥ 890 MPa	S890QL1, S960QL1, A714, A709, A515, A517	-40°C	SubCOR SL 745

Table continues on next page >>

SWX 150 (continued)

EN ISO 14174: S A FB 1 55 AC H5

Flux/wire combinations for the submerged arc welding of non-and low-alloyed steels

Materials to be welded				
Steel group	Typical examples of steel types		Impact requirement ≥47 J (≥20 ft-lbf)	Flux SWX 150 with wire:
High strength steel				
TS > 70ksi	A588, A516 Gr.70		-60°F	SubCOR EM12K-S
			-80°F	SubCOR EM13K-S MOD
	A709 Gr. HPS50W, A537 Class 1		-100°F	SubCOR N1-S
TS > 75ksi	A572 Gr. 60, A913 Gr. 60, A871 Gr. 60		-100°F	SubCOR 92-S
TS > 80ksi	A572 Gr. 65, A871 Gr. 65, A537 Class 2		-100°F	SubCOR 92S, SubCOR F2-S
TS > 85ksi	A710 Gr. A Class 3 ≤ 2"		-100°F	SubCOR 100F3-S
TS > 90ksi	A710 Gr. A Class 1 ≤ 3/4"		-100°F	SubCOR 100F3-S
TS > 100ksi	A514 >2 1/2"		-100°F	SubCOR 100F3-S
TS > 110ksi	A517, A514 <2 1/2"		-100°F	SubCOR 120-S
Weathering				
TS > 70ksi	A588		-60°F	SubCOR W-S
Chromium Molybdenum				
TS > 75ksi, 1% Cr, 0.5%Mo	A387 Gr. 11		-20°F	SubCOR B2-S
TS > 75ksi, 2% Cr, 1%Mo	A387 Gr. 22		-20°F	SubCOR B3-S
Creep resistant steel				
EN		ASTM		
P235GH-P355GH, 16Mo3, P2	35T1/T2-P460NL2,	A355 P1, A285 Gr. (C, A515 Gr. 70, A516	
L210-L445MB, S255-S460QL	1	Gr. 70		SubCORSL P1
14MoV6-3 (1.7715)		A405		SubCOR SL P1 MOD
13CrMo4-5, G17CrMo5-5, G2	2CrMo5-4	A355 P11, A387 Gr.	11	SubCOR SL P11
21CrMoV5-11, GS17CrMoV5-	17	A 387 Gr. 11		SubCOR SL P12 MOD
15NiCuMoNb5/WB 36, 20Mn	MoNi4-5, 11NiMoV53, 17MnMoV6-4	A355 P36		SubCOR SL P36
10CrMo9-10, 12CrMo9-10		A355 P22, A387 Gr.	22	SubCOR SL P22
10CrMo9-10, 12CrMo9-10, 70	CrMoVTiB10-10 (P24)	A355 P22		SubCOR SL P24
X12CrMo5		A355 P5, A387 Gr. 5	5	SubCOR SL P5
X12CrMo9-1, X7CrMo9-1		A355 P9, A387 Gr. 9)	SubCOR SL P9
X12CrMo9-1, X10CrMoVNb9-1		A355 P91, A387 Gr.	91	SubCOR SL P91
X12CrMo9-1, X10CrMoVNb9-1 X20CrMoWV12-1, X20CrMoV1	L, X10CrMoVNb9-2, X12CrWVNb12-2-2, .2-1	A355 P92		SubCOR SL P92

Approvals									
With wire	CE	ABS	BV	сwв	DNV	GL	LR	DB	TÜV
SWX 150								~	
SDX S2	~	3YM	3YM		II YM	3YM	BF 3YM NR		~
SDX S2Si-EM12K	~			F49A6-EM12K*			BF 5Y46M H5		
SDX S2Mo-EA2	~			F8A4-EA2-A4*					~
SDX S3Si-EH12K	~	5YQ460	A5Y46M H5	F49A6-EH12K*	V Y46(H5)	6Y46MH5	BF 5Y46M H5		~
SubCOR SL 731	~	3YM	3YM		III YM	3YM	5Y46	~	~
SubCOR SL 742	~	5YQ690M H5	5Y69M H5		IV Y69 MS H5	6Y69 H5	BF 5Y69M H5		~
For the complete app	oroval I	ist please see F	Product Data	Sheet or contact	t the ITW Weldi	ng sales off	ice. * Pending		

Packaging data		
Flux unit net weight	Kg	Lbs
Aluminium/PE Bag EAE*	22.7	50
*EAE Excess Air Evacuation		

EN ISO 14174: S A AF 2 DC

Flux/wire combinations for the submerged arc welding of stainless steel

Description

Hobart SWX 220 an agglomerated neutral basic flux for the single- or multi-run welding of stainless steel in all plate thicknesses. It can be combined with a wide range of SDX subarc wires for the welding of all standard austenitic stainless steel grades, for duplex and super duplex stainless steel, for dissimilar joints and for higher alloyed stainless steel grades. Multi-run welding is favoured by excellent slag detachability and smooth side-wall blending, while the overall weld appearance is very nice. It yields welds with good mechanical properties, including excellent low-temperature impact toughness.

A wide range of applications are found in transport and processing installations in the offshore oil and gas and petrochemical industries, in tanks and appliances of chemical tankers, in paper and pulp processing plants and in nuclear power stations. The flux is delivered in Hobart humidity proof EAE bag, eliminating the need to re-dry the flux.

- Offshore fabrication
- Petrochemical industry
- Chemical tankers
- Duplex grades
- Nuclear applications
- Paper and pulp plants
- Equipment for the food industry

Flux characteristics	
Flux type	Aluminate-Fluoride
Basicity index	1.7 (Boniszewski)
Alloy transfer	none
Density	~ 1.2 kg/litre
Grain size	0.2-1.6 mm /12-65 mesh
Current	DC+
Re-drying unopened bag	Not required
Re-drying opened bag	See storage and handling recommendations

Flux main components										
AL ₂ O ₃ + MnO	CaO + MgO	SiO ₂ + TiO ₂	CaF ₂							
~30%	~25%	~20%	~20%							

Flux SWX 220 - Classifications				Mechanical properties													
With wire	EN ISO	AWS	Re/Rp0.2		A	CVN			YS	TS	E	CVN					
			MPa	MPa	%	」					ksi	ksi	%	ft-lbf			
						-20°C	-40°C	-60°C	-196°C					-4°F	-40°F	76°F	-321°F
SDX 308L	14343-A: S 19 9 L	A5.9: ER308L	390	550	36	100		60	50		57	80	36	74		44	37
SDX 347	14343-A: S 19 9 Nb	A5.9: ER347	440	620	36	100		80	20		64	90	36	74		59	15
SDX 316L	14343-A: S 19 12 3 L	A5.9: ER316L	390	560	36	100		90	40		57	81	36	74		66	30
SDX 317L	14343-A: S 19 13 4 L	A5.9: ER317L	430	600	30	90		50	40		62	87	30	66		37	30
SDX 309L	14343-A: S 23 12 L	A5.9: ER309L	420	580	33	90		65	35		61	84	90	66		48	26
SDX 309LMo	14343-A: S 23 12 2 L		420	620	33	90					61	90	90	66			
SDX 2209	14343-A: S 22 9 3 N L	A5.9: ER2209	620	780	26	130	100	80	55		90	113	26	96	74	59	41
SDX 2594	14343-A: S 25 9 4 N L	A5.9: ER2594	630	830	28	80	60				91	120	28	59	44		

Flux SWX 220 - Cl	hemical co	mposit	ion all v	veld me	tal, typ	ical val	ues		
With wire	%C	%Si	%Mn	%Cr	%Ni	%Мо	%Nb	%N	FN
SDX 308L	0.02	0.6	1.4	19.5	10.0				7
SDX 347	0.04	0.6	1.0	19.1	9.3		0.5		8
SDX 316L	0.02	0.6	1.4	18.3	11.3	2.8			8
SDX 317L	0.02	0.6	1.4	19.5	14.3	3.5			6
SDX 309L	0.02	0.6	1.4	23.0	14.2	2.8			10
SDX 309LMo	0.02	0.6	1.4	21.5	14.2	2.8			12
SDX 2209	0.02	0.7	1.2	22.5	9.0	3.2		0.13	48
SDX 2594	0.01	0.45	0.6	22.5	9.2	4.0		0.26	42

SWX 220 (continued)

EN ISO 14174: S A AF 2 DC

Flux/wire combinations for the submerged arc welding of stainless steel

Materia	ils to be welded						
AISI	EN 10088-1/2	Material nr.	UNS	Flux SWX 220 with wire:			
304	X4 CrNi 18 10	1.4301	S30409	SDX 308L			
304L	X2 CrNi 19 11	1.4306	S30403	SDX 308L			
304LN	X2 CrNiN 18 10	1.4311	S30453	SDX 308L			
316	X4 CrNiMo 17 12 2	1.4401	S31600	SDX 316L			
316	X4 CrNiMo 17 13 3	1.4436		SDX 316L			
316L	X2 CrNiMo 17 12 2	1.4404	S31603	SDX 316L			
316L	X2 CrNiMo 18 14 3	1.4435	S31603	SDX 316L			
317L	X2 CrNiMoN 17 13 5	1.4439	S31726	SDX 317L			
321	X6 CrNiTi 18 10	1.4541	S32100	SDX 347, SDX 308L for service temperatures below 400°C			
347	X6 CrNiNb 18 10	1.4550	S34700	SDX 347, SDX 308L for service temperatures below 400°C			
	X2 CrNiMoN 22 5 3	1.4462		SDX 2209			
		1.4507		SDX 2594			
Dissimila	welds, moderate dilution			SDX 309L			
Dissimila	welds, high dilution, hot crack resist	ant		SDX 309LMo			

Packaging data		
Flux unit net weight	Kg	Lbs
Aluminium/PE Bag EAE*	25	55
*EAE Excess Air Evacuation		

EN ISO 14174: S A AF 2 DC

Flux/wire combinations for the submerged arc welding of Ni-base alloys

Description

Hobart SWX 282 is an agglomerated neutral basic flux for the single- or multi-run welding of Ni-base alloys, such as Alloy 82, Alloy 600 and Alloy 625. This Aluminate-Fluoride flux features exellent slag detachability and very good CVN impact properties at temperatures down to -196°C.

The flux is delivered in Hobart humidity proof EAE bags, eliminating the need to re-dry the flux. $\label{eq:continuous}$

- · Offshore oil and gas processing
- Pulp and paper industry

Flux characteristics	
Flux type	Aluminate-Fluoride
Basicity index	1.7 (Boniszewski)
Alloy transfer	none
Density	~ 1.2 kg/litre
Grain size	0.2-1.6 mm /12-65 mesh
Current	DC+
Re-drying unopened bag	Not required
Re-drying opened bag	See storage and handling recommendations

Flux main components										
AL ₂ O ₃ + MnO	CaO + MgO	SiO ₂ + TiO ₂	CaF ₂							
~30%	~25%	~20%	~20%							

Flux SWX 282-	Mech	Mechanical properties										
With wire	EN ISO	AWS	Re/Rp0.2	e/Rp0.2 Rm A CVN		Re/Rp0.2 Rm			YS	TS	E	CVN
			MPa	MPa	%	l 1		ksi	ksi	%	ft-lbf	
						-196°C					-321°F	
SDX NiCr-3	18274: S Ni6082	A5.14: ERNiCr-3	420	570	34	70		61	83	34	52	
SDX NiCrMo-3	18274: S Ni6625	A5.14: ERNiCrMo-3	470	700	40	60		68	102	40	44	

Flux SWX 282 - Che	SWX 282 - Chemical composition all weld metal, typical values												
With wire	%С	%Si	%Mn	%Cr	%Ni	%Мо	%Nb	%Fe					
SDX NiCr-3	0.01	0.3	0.3	19	Bal.	0.5	2.5	<3					
SDX NiCrMo-3	0.01	0.3	0.3	21	Bal.	9	3	<3					

Materials to be welded										
	Flux SWX 282 with wire:									
Alloy 82	SDX NiCr-3									
Alloy 600	SDX NiCr-3									
Alloy 625	SDX NiCrMo-3									

Kg	Lbs
25	55
	5

EN ISO 14174: S A AAS 2B DC

Flux/strip combinations for the SAW strip cladding of stainless strips

Description

Acid aluminium-silicate, agglomerated flux designed for submerged strip cladding with stainless strips on mild or low alloyed steel. It has good welding characteristics and gives a smooth bead appearance and easy slag removal.

SWX 305 is a non-alloying flux. The flux is delivered in Hobart humidity proof EAE bag, eliminating the need to re-dry the flux.

- Offshore fabrication
- Pressure vessels
- Petrochemical industry
- Paper and pulp plants
- Offshore oil and gas processing

Flux characteristics	
Flux type	Acid-Aluminium-Silicate
Basicity index	1.1
Alloy transfer	Non-alloying
Density	~ 1.1 kg/litre
Grain size	0.2-1.6 mm /12-65 mesh
Current	DC+
Re-drying unopened bag	Not required
Re-drying opened bag	See storage and handling recommendations

Flux main components										
AL ₂ O ₃ + MnO	Ca0 + Mg0	SiO ₂ + TiO ₂	CaF ₂							
~ 20%	~ 5%	~ 10%	~ 60%							

Flux SWX 305 - Chemical composition all weld metal, typical values											
With strip	% C	%Si	%Mn	%Cr	%Ni	%Мо	%Nb	%N	FN		
Cromastrip 308L	0.02	0.6	1.0	19.0	10.5	0.1		0.03	~6		
Cromastrip 316L	0.02	0.7	1.1	18.0	13.0	2.2		0.02	~7		
Cromastrip 347	0.02	0.7	1.1	19.0	10.5	0.1	0.4	0.03	~8		

(All analyses in 2nd layer, 1st layer welded with Cromastrip 309L.)

Packaging data									
Flux unit net weight	Kg	Lbs							
Aluminium/PE Bag EAE*	25	55							
*EAE Excess Air Evacuation									

EN ISO 14174: ES A FB 2B DC

Flux/strip combinations for electroslag strip cladding

Description

Hobart SWX 330 is a fluoride-basic, non-alloying agglomerated flux designed for standard speed electroslag strip cladding with austenitic stainless strips of the AWS EQ300 series. It has a high current carrying capacity and can be used for single or multi layer cladding.

It features excellent slag removal, also on preheated surfaces, leaving a bright deposit with smooth overlap between runs. The flux is delivered in Hobart humidity proof EAE bag, eliminating the need to re-dry the flux.

- Pressure vessels
- Petrochemical industry
- Paper and pulp plants
- · Offshore oil and gas processing
- Nuclear

Flux characteristics	
Flux type	Fluoride-basic
Basicity index	3.2 (Boniszewski)
Alloy transfer	None
Density	1.1 kg/litre
Grain size	0.2-1.2 mm /12-65 mesh
Current	DC+
Re-drying unopened bag	Not required
Re-drying opened bag	See storage and handling recommendations

Flux main components									
AL ₂ O ₃ + MnO	CaO + MgO	SiO ₂ + TiO ₂	CaF ₂						
~ 25%	~ 0%	~ 10%	~ 65%						

Flux SWX 330 - Chemical composition all weld metal, typical values										
With strip	% C	%Si	%Mn	%Cr	%Ni	%Мо	%Nb	%N	FN	Deposit type
Cromastrip 21.11 L	0.02	0.5	1.2	20.0	11.0	0.2		0.05	~4	308L
Cromastrip 21.13.3 L	0.02	0.5	1.3	19.0	13.0	3.0		0.05	~6	316L
Cromastrip 21.11 LNb	0.02	0.5	1.2	20.0	11.0	0.2	0.4	0.05	~4	347

(Single layer composition. Parameters: 1350 A, 25 V, v travel 22 cm/min. (9"/min))

Packaging data										
Flux unit net weight	Kg	Lbs								
Aluminium/PE Bag EAE*	25	55								
*EAE Excess Air Evacuation										

EN ISO 14174: ES A AF 2B DC

Flux/strip combinations for electroslag strip cladding

Description

Hobart SWX 382 is a high basic, non-alloying, agglomerated flux designed for standard speed electroslag strip cladding with Ni-based strips. It has a high current carrying capacity and can be used for single or multi layer cladding with strips.

It features excellent slag removal, also on preheated surfaces, leaving a bright deposit with smooth overlap between runs. The flux is delivered in Hobart humidity proof EAE bag, eliminating the need to re-dry the flux.

- Pressure vessels
- Petrochemical industry
- Paper and pulp plants
- · Oil and gas processing

Flux characteristics	
Flux type	Aluminate-fluoride
Basicity index	3.7 (Boniszewski)
Alloy transfer	None
Density	1.1 kg/litre
Grain size	0.2-1.2 mm /16-65 mesh
Current	DC+
Re-drying unopened bag	Not required
Re-drying opened bag	See storage and handling recommendations

Flux main components										
AL ₂ O ₃ + MnO	CaO + MgO	SiO ₂ + TiO ₂	CaF ₂							
~ 20%	~5%	~ 10%	~ 60%							

Flux SWX 382 - Chemical composition all weld metal, typical values											
With strip	%C	%Si	%Mn	%Cr	%Ni	%Mo	%Nb	%Fe	Deposit type		
Cromastrip NiCr-3*	0.03	0.6	2.7	18.0	bal.		2.1	9			
Cromastrip NiCr-3**	0.02	0.5	3.0	19.5	bal.		2.3	4	Alloy 82		
Cromastrip NiCrMo-3*	0.03	0.4	0.3	20.0	bal.	9	2.9	9			
Cromastrip NiCrMo-3**	0.02	0.3	0.2	21.5	bal.	9	3.2	4	Allov 625		

^{(* 1}st layer, 2 mm below surface. Welding parameters: 1200A/23V/18 cm/min. Strip 60 x 0.5 mm.)

^{(** 2}nd layer, 2 mm below surface. Welding parameters: 1200A/23V/18 cm/min. Strip 60 x 0.5 mm.)

Packaging data									
Flux unit net weight	Kg	Lbs							
Aluminium/PE Bag EAE*	22.7	50							
*EAE Excess Air Evacuation									

Powder backing for one-sided welding

Description

Hobart SWX 010 is an agglomerated backing powder for one-sided welding with the use of copper supports. It contains special components which enhance solidification of the slag to provide a regular and smooth root pass profile. It features excellent slag detachability. SWX 010 powder backing is non-alloying and has no influence on weld metal properties. Typical applications are the one-sided welding of panel sections in shipbuilding and the joining of strips in spiral pipe mills. Suited for multi-wire operations. It is supplied in moisture proof cans and must be used without re-drying.

- Shipbuilding
- · Spiral pipe mills

Flux characteristics	
Flux type	Not applicable
Basicity index	Not applicable
Alloy transfer	None
Density	1.1 kg/litre
Grain size	0.2-1.6 mm /12-65 mesh
Current	Not applicable
Re-drying unopened bag	Shall not be re-dried
Re-drying opened bag	See storage and handling recommendations

Powder main components				
AL ₂ O ₃ + MnO	CaO + MgO	SiO ₂ + TiO ₂	CaF ₂	
~ 15%	~ 50%	~ 30%	~ 0%	

Storage, recycling and re-drying

Store the powder backing in the sealed can. Reclose lid after opening. Make sure the sealing is in the correct position. The powder backing should not be re-dried.

Health and safety

Do not breath the fumes. Use adequate fume extraction system and/or personal protection equipment. Study the Material Safety Data Sheet carefully.

Packaging Solutions

FLUX

Hobart provides fluxes with maximum security related to weld integrity. Hydrogen in the weld metal is the greatest threat to weld integrity. Elevated levels of moisture in the flux must be avoided at any cost. Since fluxes are hygroscopic re-drying is generally recommended. The results of re-drying depends on the use of proper drying parameters and on moisture control. The parameters recommended by flux producers do generally not restore original moisture levels. Consequently, prevention of moisture pick-up is extremely important.

In order to protect the flux against moisture pick-up from the air during storage and transportation, Hobart applies moisture proof packaging as standard.

Packaging - EAE bag

For the standard weight bags, the Hobart solution is a rigidly welded 5 layer polyethylene – aluminium foil bag. The packaging material is resistant to any H₂O transfer. In addition Hobart applies EAE (Excess Air Evacuation). Each bag passes a process where excess air is evacuated, creating a reduced pressure atmosphere in the bag. As a result moisture pick-up is drastically reduced and products stored un-opened can be used without re-drying.

Packaging - DoubleBag

The Hobart solution for bulk packaging is a polypropylene outer bag with an inside polyethylene-aluminium lining. The packaging material is resistant to any $\rm H_2O$ transfer. After filling, the opening is welded. The moisture properties of the double bag are basically the same as for the EAE bag. Moisture-pick up is drastically reduced and products stored un-opened can be used without re-drying.

The bottom of the DoubleBag features a 400 mm (16") long discharge spout, equipped with a patented locking device to easily control and stop the flow of flux.

Two major user benefits

- Dry flux means safe welding. The elimination of moisture pick-up makes (possibly ineffective) re-drying redundant and ensures moisture close to the levels as produced.
- 2. Re-drying is a costly procedure considering the administration, energy consumption, operator handling and equipment investment involved. Its elimination from the production chain saves money and time, while supporting the environment by reducing emissions from energy consumption. Moreover, there is no risk of increasing the dust content by handling the flux in a re-drying process.

Finally, the effectiveness of re-drying depends highly on the process. When the re-drying temperature is too low or when the flux stays too short in the oven, the moisture level may not be lowered sufficiently. This is difficult to determine, as sophisticated laboratory equipment is required to test the actual moisture level of the flux.

Wires

Hobart wires are supplied in accordance with the market requirements. Hobart has defined a standard range of spools and weights, where the target is to always supply off the shelf. In addition Hobart wires are available in different special packaging executions for specific customer needs.

Storage and Handling Recommendations

Hobart SubCOR cored wires and SDX solid wires for submerged arc welding

Following recommendations are valid for SubCOR and SDX solid submerged arc wires.

Storage and handling recommendations:

- Store wires under dry conditions in the original sealed packaging.
- Avoid contact between wire and substances such as water or any other kind of liquid or vapour, oil, grease or corrosion.
- Do not touch the wire surface with bare hands.
- · Avoid exposure of the wire below dew point.
- Store the wire in its original plastic bag and box when not used.
- · Apply first in-first out for stocked wires.

Hobart submerged arc welding fluxes.

All Hobart fluxes are packed in moisture proof bags. The fluxes are dry and capable of giving a weld metal hydrogen content below 5 ml/100g without costly (and possibly ineffective) re-drying. This can be achieved when fabricators take necessary actions to prevent pick-up of hydrogen by the weld metal from other sources than the welding consumables.

Following Hobart standard moisture proof welding flux packaging types are available:

- Hobart 20, 22.6 or 25 kg (44, 50 or 55 lbs) EAE (Excess Air Evacuation) flux bags consisting of a 5 layer laminate with an impermeable aluminium foil.
 The bag weight depends on the flux type.
- Hobart DoubleBags up to 1 ton, lined with an impermeable aluminium foil.

Following storage and handling procedures are recommended to maintain Hobart fluxes in their original dry condition or to re-dry fluxes that may have absorbed moisture:

- Hobart welding fluxes in their original moisture proof packaging can be safely stored for a period of maximum 5 years. Make sure that the packaging cannot get damaged.
- In case the original moisture proof packaging gets damaged, flux shall be re-packed in sealed containers and stored under controlled climatic conditions of 15-35°C (60-95°F) and max 70% relative humidity, for a period of maximum 1 year.
- At shift end, flux from unprotected flux hoppers and from opened packs shall be stored in a drying cabinet or heated flux hopper at 150 +/- 25°C (300 +/- 45°F).
- During continuous welding operations, unused flux can be recycled and returned to the flux hopper for reuse. Maintain compressed air in the recycling system free from moisture and oil. Remove slag and mill scale from the recycled flux. Add at least one part of new flux to three parts of recycled flux.
- For hydrogen critical applications, any flux suspected of having picked-up hydrogen must be re-dried at a temperature of 300 350 °C (570 660 °F) for a minimum of 2 hours. Re-drying time starts when the entire quantity of flux has reached 300 °C (570 °F). Re-dried flux must be stored at 150 +/- 25°C (300 +/- 45°F) before use.

Full performance submerged arc welding pays back

Successful submerged arc welding is not restricted to choosing the correct flux and wire to achieve the required mechanical properties, but also deals with setting-up the process in the best possible manner to leverage the investment optimally.

Below, we will show examples of submerged arc process optimization and the benefits it brings to fabricators. To understand these, it is first needed to define the different cost components. Together they make up the basic cost structure of any manufacturing company.

Cost component	Abbreviation	Examples of cost included
Direct Material	DM	Raw materials, components, packaging material, material losses in the process such as scrap
Variable Overhead	VOH	Energy costs for manufacturing process, process consumables, wear parts, cost of temporary workers.
Variable cost	VC	The sum of DM+VOH. Also called Direct costs as they are zero if nothing is manufactured.
Direct Labor	DL	Wages or salaries, social charges, work clothes, production bonuses, free meals, transport to and from work etc. for blue collar operators in the work shop.
Fixed Overhead	FOH	Rental of premises, leasing of equipment, white collar personnel including production management, indirect blue collar personnel such as truck drivers and repair men, costs for heating and lighting, connection fees for utilities and communication. Sometimes also called Period Costs.
Capital costs	CCC	Capital costs for equipment, owned premises. Typically both calculated interests and depreciation are included.
Manufacturing cost	MC	Sometimes denominated Fully absorbed manufacturing costs
Sales and Administration	SG&A	Sales and Administration, typically abbreviated S&A or SG&A. General Management, Sales, Accounting, Logistics, R&D, Engineering etc. Everything from salaries to company cars, from office stationeries to outbound transport costs.
Total cost	TC	Also called Cost of Goods Sold.

Direct labor (DL)

DL is traditionally considered a direct cost, but in reality it is not possible to influence short to medium term for the vast majority of companies. Therefore Direct Labor is regarded as a fixed cost in the Hobart benefit assessment.

Variable contribution

Variable contribution = Revenue - Direct Costs. This is a key measurement, as it tells how much the sales of an item contribute to cover fixed overheads. Because fixed costs in principle do not change with the sales volume, one could argue that the incremental variable contribution is all profit, as soon as the total fixed costs have been covered. When the concept Variable Margin is used, it means the Variable Contribution in % of the Revenues.

Impact of welding

Welding consumables for SAW joining typically stand for between 0.5-2% of the total cost of the welded object. However, with a less feasible choice of consumables or set-up of the welding process, the impact on manufacturing cost will be far higher than this.

During our efforts to support our clients with SAW process optimization, we have achieved significant improvements with productivity gains of over 20%. When welding is the bottleneck, selling the additional capacity significantly improves the profit.

The diagram on the right is based on what we would call typical distribution of the costs and revenues for companies working with submerged arc welding of mild and low-alloyed steels. Based on our experience the majority of companies will not be too far off from this estimation.

In the chart we have set the start-up output at 100 and the invoiced sales price at 100, and split the latter up in three portions:

- 1. Direct cost stand for 40% of the revenue.
- Fixed overhead related to manufacturing accounts for 35% of the revenue and fixed sales and administration overhead stands for 15% of the revenue, i.e. in total 50% fixed costs before productivity improvement.
- 3. A starting balance of 10% profit.

At 10% net increase in output, the company will have to spend 10% more on direct costs (i.e. material, energy etc. as mentioned above), whereas the fixed overheads basically remain unchanged. At this typical distribution between direct and fixed costs the profit will increase by 60% from 10 to 16 and the operating margin will go from 10% to 14.5%!

ITW Welding has the intention to support clients to improve productivity and quality. All businesses are different. Hence an individual assessment has to be conducted to identify the potential. Sometimes it is possible to come up with improvements with the same leverage as above, sometimes the result is mainly savings in the direct cost area. Here is a real example of what such activities could mean to a client in monetary terms:

Company:	Spiral pipe mill
Action	Change of flux to Hobart SWX 135 and change of wire setup
	\cdot Traveling speed increased bij 18% from 2.0 to 2.4 m/min (79 to 94 inches/min)
	Net cycle time improvement 9.6%
Output of pipes before improvement	150.000 tons per annum 330.000 lbs per annum
Output of pipes after improvement	164.400 tons per annum 361.680 lbs per annum
Increased output	14.400 tons per annum 361.680 lbs per annum
Difference	9.6 %
Operating margin before improvement	9,9 %
Operating margin after improvement	14.1 %
Improved operating income in relation to flux consumption	14.87 EUR/kg flux used 8,77 USD/lb flux used

This case involves a company being in the fortunate situation where demand is higher than their output capabilities. Hobart regards the outcome of the work done in co-operation with the client quite successful, with an improvement of the operating margin by 4.2 %-units. To express the value in another sense, it accounted 14.87 EUR/kg (8.77 USD/lb) for every kg (lb) of flux consumed in the pipe manufacturing.

It is Hobart's objective to be not only a supplier of welding consumables and equipment, but to support its clients in improving their total welding operations. Aware that our customer's success equals our own, we regard this a continuous effort to be repeated frequently.

HOBART SubCOR Cored Wires for Submerged Arc Welding

The use of SubCOR flux cored wires in submerged arc welding provides interesting options to influence weld metal chemistry and thereby microstructure and mechanical properties of the weld. In the same way as submerged arc welding fluxes, the flux formulation of these wires promotes a microstructure with a low level of inclusions. This translates in superior low-temperature impact toughness. A high crack resistance is further promoted by the

combination of very low-hydrogen weld metal and a favorable, fine microstructure of mainly acicular ferrite. An example is SubCOR SL 731, a basic cored wire for the submerged arc welding of non-alloyed and fine grain steels. When used in combination with a universally applied low basicity flux, such as SWX 110, it yields superior low-temperature impact toughness over S2Mo-EA2 solid wire, at comparable yield strength levels (table 1).

Typical mechani	Typical mechanical properties in the as welded condition obtained with universally applied welding flux SWX 110.									
				Rp 0.2		Rm		CVN		
Product name	EN	AWS	Cond.	(MPa)	(ksi)	(MPa)	(ksi)	(J)	(ft-lbf)	
								-40°C	-40°F	
SDX S2Mo-EA2	S 46 2 AB S2Mo	F7A4-EA2-A2	AW	510	74	590	85	35	26	
SubCOR SL 731	S 46 4 AB T3		AW	490	71	600	87	115	85	
									(Table 1	

Another example is SubCOR SL 742, a cored wire for the submerged arc welding of high strength steel for low-temperature service. When used with SWX 150, a high basicity flux for demanding multi-layer applications, it gives comfortable safety margins for impact toughness at low-temperatures compared with its solid wire equivalent SDX S3Ni2.5CrMo (table 2). The same is valid for SDX CrMo1-EB2R solid wire and SubCOR SL P11 in the creep resistant range.

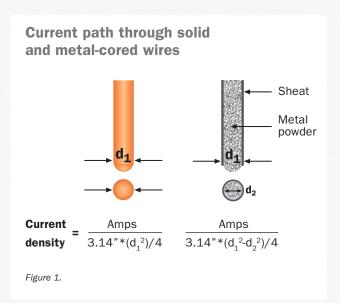
Typical mechanica	ypical mechanical properties in the as welded condition obtained with high basic flux SWX 150								
				Rp 0.2		Rm		CVN	
Product name	EN	AWS	Cond.	(MPa)	(ksi)	(MPa)	(ksi)	(J)	(ft-lbf)
								-60°C	-76°F
SDX S3Ni2.5CrMo	S 69 6 FB S3Ni2.5CrMo		AW	710	103	800	116	55	40
SubCOR SL 742	S 69 6 FB T3 Ni2.5CrMo	F11A8-ECF5-F5	AW	720	104	820	119	100	74
								-20°C	-4°F
SDX CrMo1-EB2R	S S CrMo1 FB	F8P2-EB2R-B2	SR	490	71	620	90	100	74
SubCOR SL P11	S T CrMo1 FB		SR	510	74	600	90	200	147

Additional benefits of SubCOR SL type cored wires

- · A higher safety margin on low-temperature impact toughness.
- · Weld metal hydrogen <4 HDM can be reached.
- · Totally insensitive for moisture pick-up, regardless climatic conditions.
- · No special storage requirements. Can be stored as solid wires.
- · Improved current transfer from contact tip, due to copper coating.
- Low contact tip wear.
- · Greater crack resistance due to a favorable rounded bead shape with reduced depth-width ratio.
- · Wide cast and low helix and moderate stiffness give consistent wire feeding and straight wire delivery from the contact tip.
- · Available for a wide range of non- and low-alloyed steel grades.
- · Any technically relevant alloy can be produced in small production units.

Steel category	Hobart SubCOR cored wire	Application
Unalloyed	SL 731	General purpose AW/SR
	SL 840 HC	Mech. Engineering, pipelines, vessels AW/SR/N/N+A
	SL 735-1W-5W	Single run/two run
High strength	SL 741	Re 315-550 MPa AW/SR
	SL 742	Re >690 MPa AW/SR
	SL 745	Re > 890 MPa AW
Weather resistant	SL 281 Cr	Re 255 - 460 MPa
Creep resistant	SL P1	0.5Mo, P1
	SL P1 MOD	0.5Mo + V (14MoV6-3)
	SL P11	1.25Cr/0.5Mo, P11
	SL P12 MOD	1.00Cr/0.5Mo, P12
	SL P36	0.5 Mo, P36
	SL P22	2.25 Cr/1Mo, P22
	SL P24	2.5Cr/1Mo +V, P24
	SL P5	5Cr/0.5Mo, P5
	SL P9	9Cr/1Mo, P9
	SL P91	9Cr/1Mo + Nb, V, P91
	SL P92	10Cr/1Mo + V, W, P91

Difference in weld profile between SubCOR SL 731 cored wire and S2 solid wire SDX S2. The cored wire gives a more crack resistant rounded bead shape with reduced depth-width ratio. Welded with SWX 120 at 600A and 25 mm (1") stickout length. Wire diameter 2.4 mm (1/10").


Improved productivity from SubCOR metal-cored wires

SubCOR metal-cored wires for submerged arc welding offer a number of advantages over the use of solid wires – in terms of welding efficiency, weldability and weld quality.

- Potential for higher deposition rates than solid wires at the same amperage.
- Potential to increase deposition without increasing heat input, or to decrease heat input without sacrificing deposition.
- · Often better impact toughness and CTOD properties.
- A more favorable, broader shaped penetration and fusion pattern.
- Greater tolerance to gaps, poor fit up, and burn through.

Metal-cored wires are composite tubular electrodes consisting of a metal sheath and a core of metallic and/ or non-metallic ingredients. An example of a metallic ingredient is iron powder. The deposition efficiency will increase with the amount of metallic ingredients in a composite tubular wire. Non-metallic ingredients can, for instance, be agents that clean and deoxidize the weld or slag forming components. In a metal cored wire, the current travels only through the sheath, whereas in a solid

wire the current travels through the entire cross-section of the wire (Figure 1). Therefore, at an equivalent amperage setting, a metal-cored wire will experience higher current densities. The resulting increased melt-off rates, in combination with a high percentage of metallic particles, offers increased deposition rates. The effect is most prominent at higher welding currents, as can be seen from Figures 2 and 3.

9.1

4.5

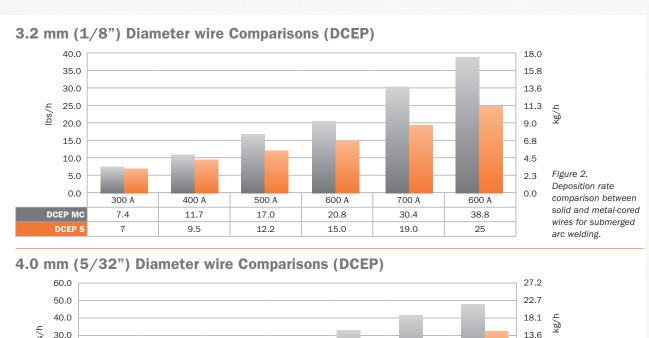
0.0

1000 A

48

32.2

Figure 3.


Deposition rate

arc welding.

comparison between

solid and metal-cored

wires for submerged

800 A

32.2

22.3

700 A

25.3

18.7

900 A

40.7

28

20.0

10.0

0.0

DCEP MC

400 A

11.0

11.3

500 A

14.0

14.2

600 A

17.3

16.3

Following data results from a qualification test performed in offshore fabrication. The steel used was an offshore grade with a minimum yield strength of 460 MPa (67 ksi) in 32 mm (1.25") plate thickness. The joint preparation was a 60° V-joint. The root pass was done by GMAW with an S2Ni1-ENi1 solid wire. For the submerged arc welding, variable balance power sources were used in a triple wire set up.

	Metric		Imperial		
	Solid wire	Metal cored wire	Solid wire	Metal cored wire	MC vs
Submerged arc wire	Hobart SDX S3Ni1Mo.2-ENi5	Hobart SubCOR 92-S	Hobart SDX S3Ni1Mo.2-ENi5	Hobart SDX S3Ni1Mo.2-ENi5	Solid
Flux	Hobart SWX 150	Hobart SWX 150	Hobart SWX 150	Hobart SWX 150	
Wire class EN ISO 14171/AWS A5.23	S3Ni1Mo0.2/ENi5	-/ECM1	S3Ni1Mo0.2/ENi5	-/ECM1	
Wire set up	3 x 4.0 mm	3 x 4.0 mm	3 x 5/32"	3 x 5/32"	
Process description	AC/AC/AC	AC/AC/AC	AC/AC/AC	AC/AC/AC	
Parameters	30-35 V, 550-700 A	28-36 V, 600-700 A	30-35 V, 550-700 A	28-36 V, 600-700 A	
Wire feed speed	125-190 cm/min	190-250 cm/min	50-75 inch/min	75-100 inch/min	
Travel speed	107 cm/min	120 cm/min	42 inch/min	47 inch/min	+12%
No. of passes	12	11	12	11	-1
Max interpass temperature	260 °C	260 °C	500 °F	500 °F	
Peak heat input	3.3 kJ/mm	3.2 kJ/mm	84 kJ/inch	82 kJ/inch	
Average heat input	3.1 kJ/mm	3.0 kJ/mm	79 kJ/inch	77 kJ/inch	
AW yield strength	497 MPa	490 MPa	72.1 ksi	71.1 ksi	
Cross weld tensile	500 MPa	498 MPa	72.6 ksi	72.1 ksi	
CVN @ -40 °C (-40 °F) - Root	102 J	103 J	75 ft-lbs	76 ft-lbs	
CVN @ -40 °C (-40 °F) - Cap	88 J	121 J	65 ft-lbs	89 ft-lbs	+37%
CTOD @-10 °C (+14 °F)	1.27 mm	1.61 mm	0.050 inch	0.063 inch	
Deposition rate	24.9 kg/h	30.6 kg/h	54.8 lbs/h	67.3 lbs/h	+23%

This case represents well the difference between a metalcored and a solid wire in a 4.0 mm (5/32") wire diameter application. You will typically see both a productivity gain as well as improved mechanical properties.

Productivity is, of course, always important in any business. Metal-cored wires provide this. However, sometimes the required mechanical properties are the limiting factor and, in most cases, these can be met by exchanging solid to MC wires, without sacrificing productivity. There are also cases, mainly in high strength and high temperature applications, where the mechanical properties cannot be met without exchanging the solid wire with a cored wire.

Estimating deposition rates for metal-cored and solid wires

An efficiency of 99% is used when calculating the deposition rates of solid wires when used in the SAW process. In comparison, metal-cored wires use a 97% efficiency rate for calculating deposition rates, whereas efficiency rates of 92% can be realized with flux-cored wire. It should also be noted that metal-cored wires for SAW are formulated

differently than those metal-cored wires formulated to run with shielding gas. They show differences in deposition efficiency, as well as in the weight of the wire. By using the numbers below one can create a simple spread sheet to calculate deposition rates based off of wire feed rates and deposition efficiency.

Net weld metal de	position	for metal co	ed and solid	d SAW wires
Efficiency	MC 97	% efficiency	Solid 99%	efficiency
Weight	g/m		lbs/inch	
Wire diameter	MC	Solid	МС	Solid
2.4 mm (3/32")	30	35	0.0017	0.0020
3.2 mm (1/8")	50	60	0.0028	0.0034
4.0 mm (5/32")	80	95	0.0045	0.0053

Tabel 1

Approximate deposition rate:

Wfs = Wire feed speed cm/min (inches/min)

Metric: Deposition rate kg/h =

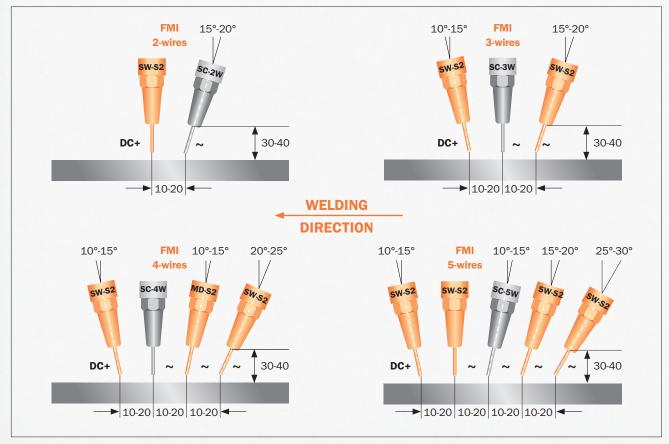
Wire weight g/m * Wfs cm/min * 0.0006

Imperial: Deposition rate lbs/h =

Wire weight lbs/inch * Wfs inches/min * 60

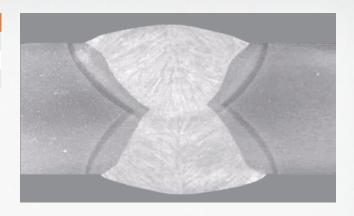
Flux Cored Micro Injection

Flux cored micro injection (FMI) is a special application of Hobart SubCOR SL cored wires. In single- and two-run welding, micro-alloying through the cored wire is an effective way to counteract the formation of a coarse microstructure and to promote good impact toughness. In single- or two-run applications, recrystallization by subsequent layers does not occur, or not to the same extent as with multi-layer welds. As a consequence, the microstructure maintains its solidification structure with high amounts of coarse ferrite and limited impact toughness. Micro-alloying through the core of flux cored wires, provides nuclei in the solidifying weld metal that act as initiation points for a fine microstructure of favourable acicular ferrite giving high impact toughness.


Typical single- and two-run applications are found in the welding of ship panels and in the production of line pipe in pipe mills. For productivity reasons, multi-layer welds

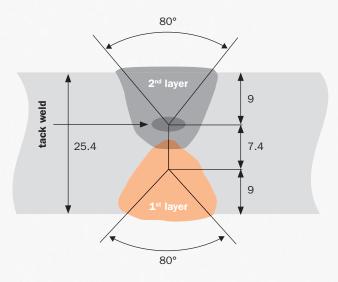
are avoided as much as possible and as high as possible plate thickness is covered with the single- or two-run techniques, mostly with multi-wire welding heads. Flux cored micro injection with SubCOR SL cored wires are developed to give good weld metal impact toughness in such applications.

SubCOR SL 735 -1W (1 wire) is developed for single wire welding. Increasing levels of micro-alloying are applied in the multi-wire versions - 2W, 3W, 4W and 5W - which are developed for respectively two, three, four and five wire welding. It is important to note that only a single cored wire is needed in multi-wire applications to obtain the desired effect. With the 2W, 3W, 4W and 5W versions, cored wire formulations are adapted to obtain the same weld chemistry as with the 1W version. All other wires on the same welding head are standard solid wire types.


The benefits of FMI applied in high deposition submerged arc welding are:

- · A finer microstructure and associated higher weld metal impact toughness.
- · Thicker plate thicknesses can be covered.
- · Good weld metal impact toughness is maintained at higher deposition rates.

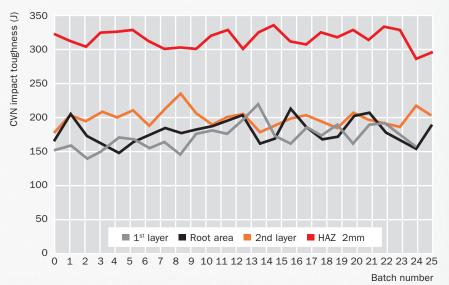
Macro cross section	, impact t	oughness	values	
CVN (J)	0°C	-20°C	-40°C	-60°C
1st layer (bottom)	156	132	75	52
2nd layer	165	153	126	88


Macro cross section of a two-run weld in 22 mm thick plate welded with a three-wire system: 2 x SDX S2Mo-EA2 and 1 x SubCOR 735 -3W. Travel speed 1st layer 90 cm/min (35"/min). Travel speed 2nd layer 130 cm/min (51"/min.). Impact toughness values are average of three.

FMI applied in the welding of X65 line pipe for sour gas sevice.

Flux cored micro injection has been successfully applied in the production of 685,000 tons of longitudinally welded large diameter line pipe for sour gas service. This involved material grade X65, in wall thicknesses of 19.05 and 25.4 mm.

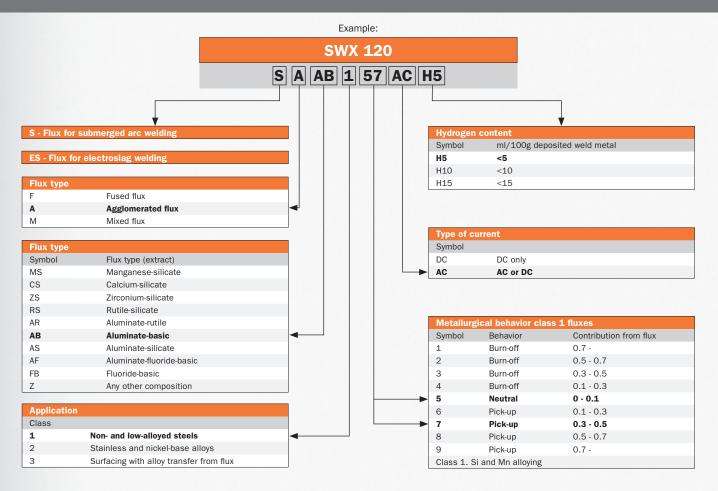
The CVN impact requirement was 85J at 0 °C. SubCOR SL 735 -4W was combined with three S2Mo wires in a four wire welding head. The table shows the welding parameters applied in the two-run technique for welding 25.4 mm (1") thick X65 grade pipe.



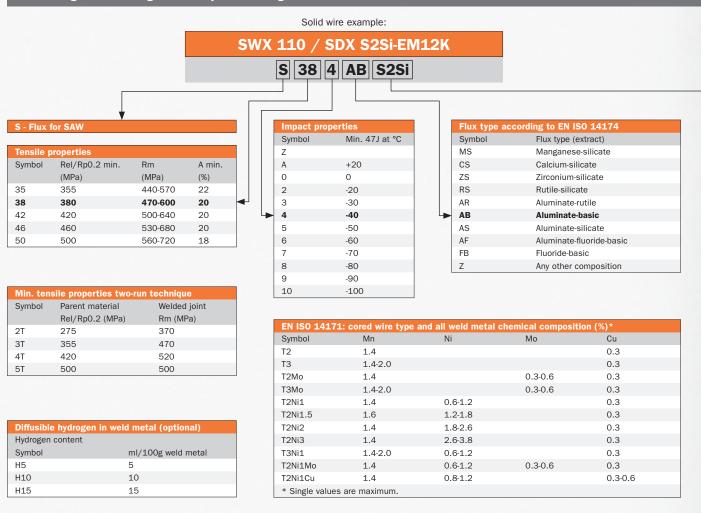
FMI	process	parameters	for a	sheet	thickness	of 25.4mm	(1").

	All wires in Ø 4 mm	1 st head S2Mo	2 nd head 735 -4W	3 rd head S2Mo	4 th head S2Mo
aye	Current [A]	1150	900	800	750
2 nd layer	Voltage [V]	35	38	38	40
.,	speed [cm/min]		155 (61	L"/min)	

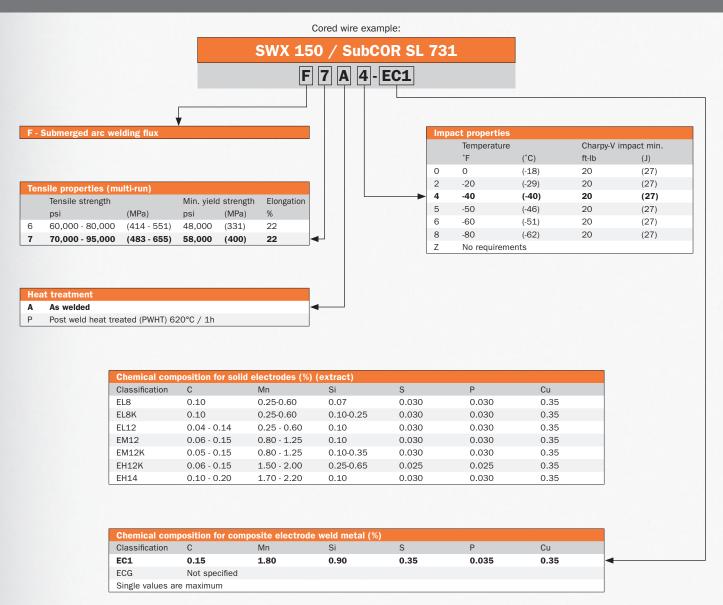
		1 st head S2Mo	2 nd head 735 -4W	3 rd head S2Mo	4 th head S2Mo
ayeı	Current [A]	850	750	650	600
1⁵⁺ layer	Voltage [V]	35	35	36	37
\ 1	speed [cm/min]		115 (45	5"/min)	


In total, 25 batches of SubCOR SL 735 -4W were manufactured for the production of 62,000 pipes. In addition to the approval welds, production tests were performed on original X65 for each batch under the same circumstances as in actual production. The diagram shows the statistic evaluation of the CVN impact toughness over 25 batches. The requirement of 85J at 0 °C (63 ft-lbf at 32 °F) is consistently met with a substantial safety margin for all areas of the weld, including heat

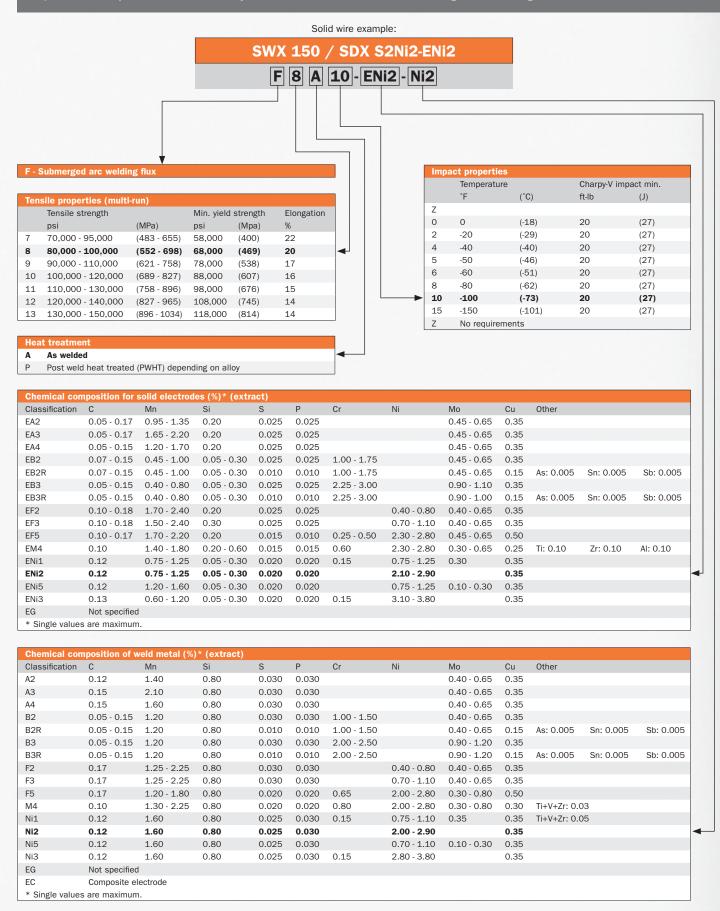
Statistic evaluation of CVN test results. Requirement: 85J at 0 $^{\circ}$ C (63 ft-lbf at 32 $^{\circ}$ F)


EN 14174: Fluxes for submerged arc welding

Metallurg	ical behavior o	class 2 fluxes (weig	ght %)		
Symbol	Behavior	С	Si	Cr	Nb
1	Burn-off	> 0.020	> 0.7	> 2.0	> 0.20
2	Burn-off	-	0.5-0.7	1.5-2.0	0.15-0.20
3	Burn-off	0.010-0.020	0.3-0.5	1.0-1.5	0.05-0.15
4	Burn-off	-	0.1-0.3	0.5-1.0	0.05-0.10
5	Neutral	0.000-0.010	0.0-0.1	0.0-0.5	0.00-0.05
6	Pick-up	-	0.1-0.3	0.5-1.0	0.05-0.10
7	Pick-up	0.010-0.020	0.3-0.5	1.0-1.5	0.10-0.15
8	Pick-up	-	0.5-0.7	1.5-2.0	0.15-0.20
9	Pick-up	>0.020	>0.7	>2.0	> 0.20
Class 2 an	d 2B. Chemical	symbols pick-up			


EN ISO 14171-A: Solid wires, cored wires and wire/flux combinations for submerged arc welding of non-alloyed and fine grain steels.

Symbol	С	Si	Mn	Mo	Ni	Cr	Cu**
31	0.05-0.15	0.15	0.35-0.60	0.15	0.15	0.15	0.30
S2	0.07-0.15	0.15	0.80-1.30	0.15	0.15	0.15	0.30
S3	0.07-0.15	0.15	1.30-1.75	0.15	0.15	0.15	0.30
S4	0.07-0.15	0.15	1.75-2.25	0.15	0.15	0.15	0.30
S1Si	0.07-0.15	0.15-0.40	0.35-0.60	0.15	0.15	0.15	0.30
S2Si	0.07-0.15	0.15-0.40	0.80-1.30	0.15	0.15	0.15	0.30
S2Si2	0.07-0.15	0.40-0.60	0.80-1.30	0.15	0.15	0.15	0.30
S3Si	0.07-0.15	0.15-0.40	1.30-1.85	0.15	0.15	0.15	0.30
S4Si	0.07-0.15	0.15-0.40	1.85-2.25	0.15	0.15	0.15	0.30
S1Mo	0.05-0.15	0.05-0.25	0.35-0.60	0.45-0.65	0.15	0.15	0.30
S2Mo	0.07-0.15	0.05-0.25	0.80-1.30	0.45-0.65	0.15	0.15	0.30
S2MoTiB***	0.05-0.15	0.15-0.35	1.00-1.35	0.40-0.65			0.30
S3Mo	0.07-0.15	0.05-0.25	1.30-1.75	0.45-0.65	0.15	0.15	0.30
S4Mo	0.07-0.15	0.05-0.25	1.75-2.25	0.45-0.65	0.15	0.15	0.30
S2Ni1	0.07-0.15	0.05-0.25	0.80-1.30	0.15	0.80-1.20	0.15	0.30
S2Ni1.5	0.07-0.15	0.05-0.25	0.80-1.30	0.15	1.20-1.80	0.15	0.30
S2Ni2	0.07-0.15	0.05-0.25	0.80-1.30	0.15	1.80-2.40	0.15	0.30
S2Ni3	0.07-0.15	0.05-0.25	0.80-1.30	0.15	2.80-3.70	0.15	0.30
S2Ni1Mo	0.07-0.15	0.05-0.25	0.80-1.30	0.45-0.65	0.80-1.20	0.20	0.30
S3Ni1.5	0.07-0.15	0.05-0.25	1.30-1.70	0.15	1.20-1.80	0.20	0.30
S3Ni1Mo	0.07-0.15	0.05-0.25	1.30-1.80	0.45-0.65	0.80-1.20	0.20	0.30
S3Ni1Mo0.2	0.07-0.15	0.10-0.35	1.20-1.60	0.15-0.30	0.80-1.20	0.15	0.30
S3Ni1.5Mo	0.07-0.15	0.05-0.25	1.20-1.80	0.30-0.50	1.20-1.80	0.20	0.30
S2Ni1Cu	0.06-0.12	0.15-0.35	0.70-1.20	0.15	0.65-0.90	0.40	0.40-0.65
S3Ni1Cu	0.05-0.15	0.15-0.40	1.20-1.70	0.15	0.60-1.20	0.15	0.30-0.60
SZ	Any other agree	d analysis					
* Single values a	re maximum. ** Cu	, including copper laye	er. Al < 0.030. *** Ti	: 0.10-0.20			

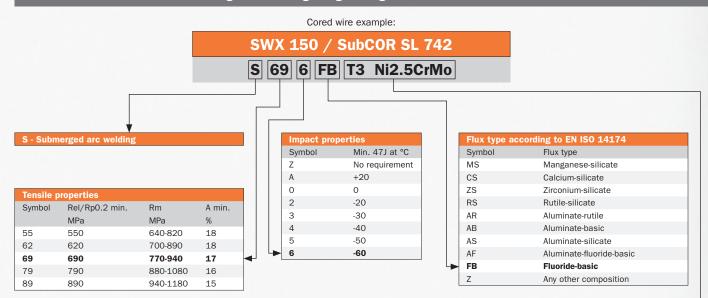


SFA/AWS 5.17: Specification for carbon steel electrodes and fluxes for submerged arc welding

SFA/AWS 5.23: Specification for low-alloy steel electrodes and fluxes for submerged arc welding

EN ISO 24598-A: Solid wire electrodes, tubular cored electrodes and electrode-flux combinations for submerged arc welding of creep resisting steels

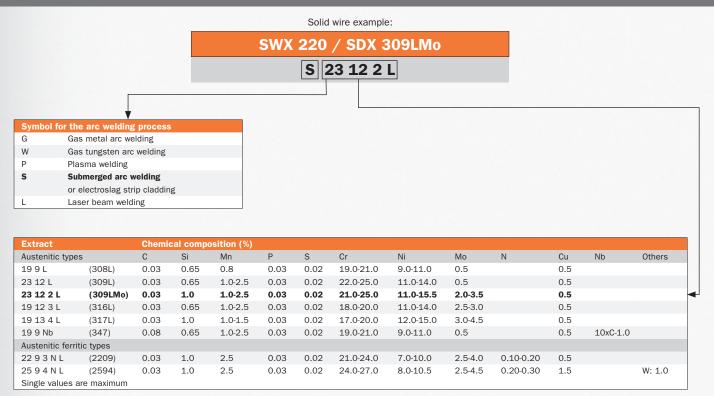
Solid wire example: SWX 150 / SDX CrMo1-EB2R S S CrMo1 FB S - Submerged arc welding process S - Solid wire T - Cored wire


Mechanical prope	Mechanical properties all weld metal flux / (cored) wire combinations									
Symbol	min. yield	Tensile	Elongation	CVN impact to	ughness at +20°C	Heat treatment				
	strength	strength		Av. of 3 min.	Min. single value	Preheat and interpass	Post weld heat	Time		
	MPa	MPa	%	J	J	temperature °C	treatment °C	min.		
Mo / MnMo	355	510	22	47	38	<200				
MoV	355	510	18	47	38	200-300	690-730	60		
CrMo1	355	510	20	47	38	150-250	660-700	60		
CrMoV1	435	590	15	24	21	200-300	680-730	60		
CrMo2/CrMo2Mn	400	500	18	47	38	200-300	690-750	60		
CrMo2L	400	500	18	47	38	200-300	690-750	60		
CrMo5	400	590	17	47	38	200-300	730-760	60		
CrMo9	435	590	18	34	27	200-300	740-780	120		
CrMo91	415	585	17	47	38	250-350	750-760	180		
CrMoWV12	550	690	15	34	27	250-350 or 400-500	740-780	120		

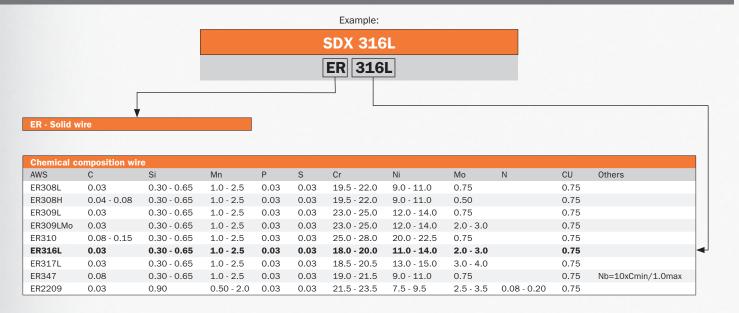
Chemical co	mposition	all weld met	tal for flux /	(cored) wi	re combina	tions					
Symbol	С	Si	Mn	Р	S	Cr	Ni	Мо	Cu	V	Other
Мо	0.15	0.80	1.4	0.030	0.030	0.2	0.3	0.40 - 0.65	0.35	0.03	Nb: 0.01
MnMo	0.15	0.80	2.0	0.030	0.030	0.2	0.3	0.40 - 0.65	0.35	0.03	Nb: 0.01
MoV	0.15	0.80	1.4	0.030	0.030	0.20 - 0.60	0.3	0.45 - 1.00	0.35	0.20 - 0.45	Nb: 0.01
CrMo1	0.15	0.80	1.20	0.030	0.030	0.80 - 1.30	0.25	0.35 - 0.65	0.40	0.03	Nb: 0.01
CrMoV1	0.15	0.80	1.40	0.030	0.030	0.80 - 1.30	0.3	0.80 - 1.30	0.35	0.10 - 0.35	Nb: 0.01
CrMo2	0.15	0.80	1.20	0.030	0.030	2.0 - 2.8	0.3	0.80 - 1.50	0.35	0.03	Nb: 0.01
CrMo2Mn	0.10	0.80	1.40	0.030	0.020	1.8 - 2.5	0.3	0.80 - 1.20	0.35	0.03	Nb: 0.01
CrMo2L	0.05	0.80	1.20	0.030	0.030	2.0 - 2.8	0.3	0.80 - 1.15	0.35	0.03	Nb: 0.01
CrMo5	0.10	0.80	1.20	0.030	0.030	4.50 - 6.50	0.3	0.45 - 0.80	0.35	0.03	Nb: 0.01
CrMo9	0.10	0.80	1.20	0.030	0.030	8.0 - 10.0	1.0	0.70 - 1.20	0.35	0.15	Nb: 0.01
CrMo91	0.15	0.80	1.80	0.030	0.030	8.0 - 10.5	1.0	0.70 - 1.20	0.35	0.10 - 0.30	Nb: 0.02 - 0.10
CrMoWV12	0.24	0.80	1.4	0.030	0.030	9.5 - 12.0	0.80	0.70 - 1.20	0.35	0.15 - 0.40	Nb: 0.01
Z	Any othe	r agreed com	position								
* Single value	s are maxii	mum.									

Flux type	Flux type according to EN ISO 14174			
Symbol	Flux type			
MS	Manganese-silicate			
CS	Calcium-silicate			
ZS	Zirconium-silicate			
RS	Rutile-silicate			
AR	Aluminate-rutile			
AB	Aluminate-basic			
AS	Aluminate-silicate			
AF	Aluminate-fluoride-basic			
FB	Fluoride-basic			
Z	Any other composition			

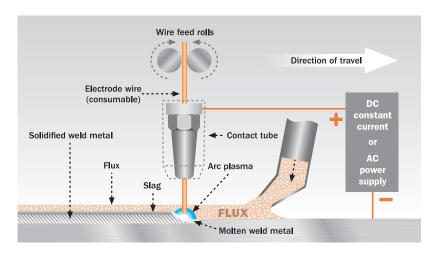
ISO 26304-A: Solid wire electrodes, tubular cored electrodes and electrode-flux combinations for submerged arc welding of high strength steels


Diffusible hydrogen in weld metal (optional)						
Hydrogen content						
Symbol	ml/100g weld metal					
H5	5					
H10	10					
H15	15					

Chemical com	Chemical composition wire (%)*									
Symbol	С	Si	Mn	Р	S	Cr	Ni	Мо	Cu	Other
S2Ni1Mo	0.07 - 0.15	0.05 - 0.25	0.80 - 1.30	0.020	0.020	0.20	0.80 - 1.20	0.45 - 0.65	0.30	
S3Ni1Mo	0.07 - 0.15	0.05 - 0.35	1.30 - 1.80	0.020	0.020	0.20	0.80 - 1.20	0.45 - 0.65	0.30	0.50
S3Ni1.5Mo	0.07 - 0.15	0.05 - 0.25	1.20 - 1.80	0.020	0.020	0.20	1.20 - 1.80	0.30 - 0.50	0.30	0.50
S2Ni2Mo	0.05 - 0.09	0.15	1.10 - 1.40	0.015	0.015	0.15	2.00 - 2.50	0.45 - 0.60	0.30	0.50
S2Ni3Mo	0.08 - 0.12	0.10 - 0.25	0.80 - 1.20	0.020	0.020	0.15	2.80 - 3.20	0.10 - 0.25	0.30	0.50
S3Ni1.5CrMo	0.07 - 0.14	0.05 - 0.15	1.30 - 1.50	0.020	0.020	0.15 - 0.35	1.50 - 1.70	0.30 - 0.50	0.30	0.50
S3Ni2.5CrMo	0.07 - 0.15	0.10 - 0.25	1.20 - 1.80	0.020	0.020	0.30 - 0.85	2.00 - 2.60	0.40 - 0.70	0.30	0.50
S1Ni2.5CrMo	0.07 - 0.15	0.10 - 0.25	0.45 - 0.75	0.020	0.020	0.50 - 0.85	2.10 - 2.60	0.40 - 0.70	0.30	0.50
S4Ni2CrMo	0.08 - 0.11	0.30 - 0.40	1.80 - 2.00	0.015	0.15	0.85 - 1.00	2.10 - 2.60	0.55 - 0.70	0.30	0.50
TZ	Any other agre	eed analyses								
* Single values are maximum.										


All weld metal c	All weld metal chemical composition flux / cored wire combination (%)*									
Symbol	С	Si	Mn	Р	S	Cr	Ni	Мо	V	
T3NiMo	0.05 - 0.12	0.20 - 0.60	1.30 - 1.90	0.02	0.02		0.60 - 1.00	0.15 - 0.45		
T3Ni1Mo	0.03 - 0.09	0.10 - 0.50	1.39 - 1.80	0.02	0.02		1.00 - 1.50	0.45 - 0.65		
T3Ni2MoV	0.03 - 0.09	0.20	1.20 - 1.70	0.02	0.02		1.60 - 2.00	0.20 - 0.50	0.05 - 0.15	
T3Ni2Mo	0.03 - 0.09	0.40 - 0.80	1.30 - 1.80	0.02	0.02		1.80 - 2.40	0.20 - 0.40		
T3Ni3Mo	0.03 - 0.09	0.20 - 0.70	1.60 - 2.10	0.02	0.02		2.70 - 3.20	0.20 - 0.40		
T3Ni2.5CrMo	0.03 - 0.09	0.10 - 0.50	1.20 - 1.70	0.02	0.02	0.40 - 0.70	2.20 - 2.60	0.30 - 0.60		
T3Ni2.5Cr1Mo	0.04 - 0.10	0.20 - 0.70	1.20 - 1.70	0.02	0.02	0.70 - 1.20	2.20 - 2.60	0.40 - 0.70		
TZ	Any other agre	ed analyses								
* Single values ar	e maximum.									

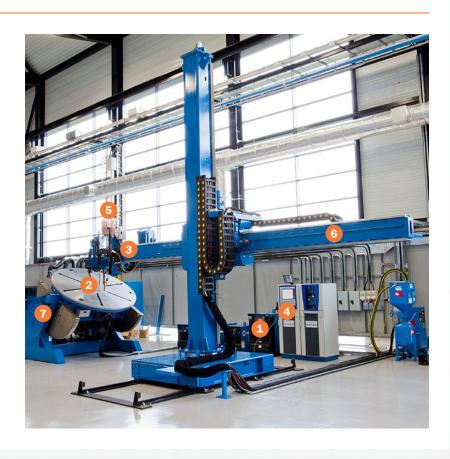
EN ISO 14343-A: Welding consumables - Wire electrodes, strip electrodes, wires and rods for arc welding of stainless and heat resisting steels - Classification according to nominal composition


SFA / AWS A5.9: Bare stainless steel welding electrodes and rods (extract)

Submerged Arc Welding Process

From fundamentals to the latest technology

In submerged arc welding, the arc is "submerged" in flux and is not visible when parameters are correctly set and the layer of flux is sufficiently thick. The wire is automatically fed through a welding head that moves along the weld joint. The arc heat melts a portion of wire, flux and parent metal to form a molten weld pool. In this area all important functions of the flux - such as degassing, deoxidizing and alloying - take place. Behind the arc, molten flux and metal freeze to form a slag-covered weld bead.



Single wire submerged arc welding

When the welding process is correctly set the slag should come off without any particular effort. The process is normally mechanized or automated. Key components of the process welding head, flux feeding and recovery system, wire spool, wire feeders and control unit are mounted on a carrier such as a tractor or column and boom. Power sources are usually positioned anywhere near the carrier, along with bulk wire supply.

- 1. Power source
- 2. Welding head
- 3. Flux hopper
- 4. Control unit
- 5. Wire spool
- 6. Carrier
- 7. Manipulator

ITW Welding as First Tier Member, has installed an advanced Miller SAW and ESC welding and strip cladding system at the Nuclear AMRC (Nuclear Advanced Manufacturing Research Centre) in the UK. The equipment has enabled both organisations to carry out research and development work in advancing the SAW process for nuclear, renewable energy and oil and gas related projects.

Submerged Arc Welding Process

Pros and cons of the process

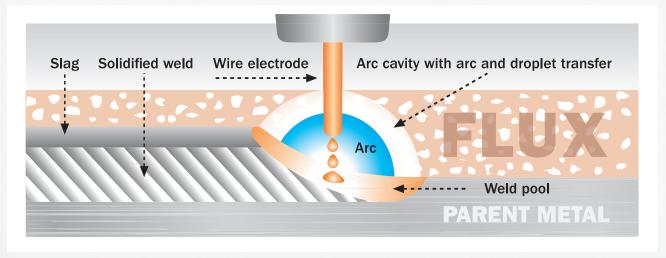
Submerged arc welding has a number of distinct advantages in terms of welding economy and weld quality, but also some limitations compared with other arc welding processes.

Advantages:

- Clean automatic process without UV radiation and spatter and minimal fume.
- Superior deposition rates of up to 100 kg/h
 (220 lbs/h) in multiple-wire welding.
- Very high travel speeds of up to 250 cm/min (100"/min).
- · From a few millimetres to unlimited plate thickness.
- Excellent mechanical properties and X-ray quality welds.
- · No spatter high weld metal recovery.
- Reliable process with secure weld penetration and reduced risk of lack of fusion.
- Weld metal chemical composition and mechanical properties can be controlled via the flux/wire combination.

Limitations:

- · Capital investment.
- Only suited for flat and horizontal fillet positions (PA/1G, PB/2F). PC/2G possible with flux support.
- · Requires first class joint preparation.
- Requires precise parameter setting and positioning of the wire electrode.
- Adjustments not easily determined because of the invisible arc.
- Requires disposal of the slag.


Welding flux - A critical process component

In submerged arc welding, the flux performs a number of essential functions, enabling a stable arc at the high welding currents characteristic for this productive process:

- Creation of a slag that forms a cavity for the arc to establish in.
- · Improvement of arc conductivity and droplet transfer.
- Shielding droplets, weld pool and solidifying weld from the surrounding air.
- Deoxidization of the weld metal and removal of impurities.
- Supports deep penetration by preventing heat to escape.
- Meets different chemical and mechanical weld requirements, depending on the wire electrode.

To enhance the submerged arc welding process the flux must:

- have the right particle mix to allow degassing and facilitate high welding currents.
- have the right slag properties to allow high travel speeds.
- · create a slag that releases easily.
- provide the lowest possible flux consumption.
- have good grain strength to limit the forming of dust in recycling.

Submerged arc welding fluxes and manufacturing methods

There are basically two types of welding fluxes characterized by their manufacturing method; agglomerated and fused.

Fused fluxes have long been used universally in submerged arc welding, but have widely been replaced by agglomerated fluxes – even in countries with a tradition in the use of fused fluxes.

In the production of agglomerated fluxes, powder raw materials with specified grain size are mixed with a bonding agent to form chemically homogeneous grains. Subsequently, the flux is baked at high temperature to remove moisture and sieved to the desired grain size distribution. Agglomerated fluxes provide the following advantages compared to fused fluxes to the submerged arc welding process:

- The lower temperature in the manufacturing process allows addition of a higher level of deoxidizers and alloying elements. This results in cleaner welds with significantly improved mechanical properties; most notably with better low-temperature impact toughness.
- In the vast majority of applications agglomerated fluxes allow higher travelling speed, typically meaning lower manufacturing costs.
- Agglomerated fluxes are available for all steel grades and applications.
- · Lower flux consumption due to lower arc voltage.

Hydrogen classes

The hydrogen class of a flux, as manufactured, is embedded in the classification according to EN ISO 14174, AWS A5.17 and AWS A5.23.

EN ISO 14174: e.g. S A AB 1 67 AC H5. H5 indicates that the flux is capable of producing a weld metal with less than 5 ml diffusible hydrogen per 100 g weld metal.

AWS A5.17: e.g. F7A4-EM12K-H4. H4 indicates that the flux is capable of producing a weld metal with less than 4 ml diffusible hydrogen per 100 g weld metal.

Hydrogen clas	s	ml/100 g deposited
EN ISO 14174	AWS A5.17 and AWS A5.23	weld metal
	H2	<2
	H4	<4
H5		<5
	Н8	<8
H10		<10
H15		<15
	H16	<16

Hobart fluxes and packaging

The Hobart welding fluxes reviewed in this catalogue are all agglomerated, low-hydrogen types. The various SWX fluxes, in combination with the appropriate SDX or SubCOR wire electrode, cover a wide range of grades within normal strength, high strength, low-temperature, creep resistant and stainless steel, as well as nickel base alloys. They feature extremely low moisture contents and are all supplied standard in moisture proof EAE (Excess Air Evacuation) bags or DoubleBag bulk packaging, both giving maximum security against moisture absorption and hydrogen cracking.

Flux types and standards

Submerged arc welding fluxes and flux/wire combinations are named, standardized and categorized in various European/international (EN ISO) and United States (AWS) standards. The standards referred to in this catalogue are:

· EN ISO 14171:

Solid wire electrodes, tubular cored electrodes and electrode/flux combinations for submerged arc welding of non-alloy and fine grain steels.

EN ISO 14174:

Fluxes for submerged arc welding.

· EN ISO 24598:

Solid wire electrodes, tubular cored electrodes and electrode-flux combinations for submerged arc welding of creep resisting steels.

>>

Submerged Arc Welding Process

· EN ISO 26304:

Solid wire electrodes, tubular cored electrodes and electrode-flux combinations for submerged arc welding of high strength steels.

· EN ISO 14343:

Wire electrodes, strip electrodes, wires and rods for arc welding of stainless and heat resisting steels.

· SFA/AWS 5.17:

Specification for carbon steel electrodes and fluxes for submerged arc welding.

· SFA/AWS 5.23:

Specification for low-alloy steel electrodes and fluxes for submerged arc welding.

· SFA/AWS A5.9:

Bare stainless steel welding electrodes and rods.

Fluxes are categorized in different ways. Agglomerated versus fused fluxes is one of them, but within these categories there is a variety of flux compositions possible. A refined method is given in the EN ISO 14174 flux classification standard where fluxes are marked with a symbol for their main chemical constituents, for example: S A AB 1 67 AC H5

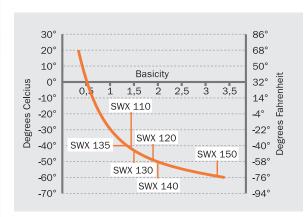
Here AB signifies that it is an aluminate-basic flux. The most frequently used symbols are given in the following table together with their main chemical constituents. All relevant EN ISO standards use these symbols to typify the flux within classifications of flux/wire combinations. All relevant classification standards are explained in detail elsewhere in this catalogue.

Symbol	Flux type	Characteristic chemical constituents	% of total flux
FB	Fluoride-basic	CaO+MgO+CaF ₂ +MnO	>50
		SiO ₂	<20
		CaF ₂	>15
AF	Aluminate-fluoride-basic	$Al_2O_3 + CaF_2$	>70
AB	Aluminate-basic	$Al_2O_3 + CaO + MgO$	>40
		Al_2O_3	>20
		CaF ₂	<22
AR	Aluminate-rutile	$Al_2O_3 + TiO_2$	>40

Flux basicity index (BI)

Basicity is commonly used to describe the relation between basic flux ingredients and acidic flux ingredients.

The most commonly applied method to calculate the basicity index is according to Boniszewski's formula:


BI=
$$\frac{\text{Ca0 + Mg0+Sr0+Ba0+Li}_2\text{O+Na}_2\text{O+K}_2\text{O+CaF}_2+0.5 \text{ (Fe0+Mn0)}}{\text{Si0}_2+0.5 \text{ (Al}_2\text{O3+Ti0}_2+\text{Zr0}_2)}$$

A high basicity index leads to lower oxygen levels and thereby to fewer micro inclusions in the weld metal, which is beneficial for the microstructure and improves impact toughness. However, a higher basicity generally gives a slag with lower viscosity and hence a lower current carrying capacity of the flux, leading to lower productivity. It is recommended to look for the lowest possible basicity flux in order to achieve the required impact toughness.

Bas	icity index	Type of flux	Weld metal 0 content (wt%)
BI	< 0.9	Low basicity flux	> 700 ppm
ВІ	0.9-1.2	Neutral basicity flux	500 – 700 ppm
ВІ	1.2-2.5	Basic flux	350 – 500 ppm
ВІ	>2.5	High basic flux	<350 ppm

Hobart fluxes basicity vs. CVN impact toughness

The diagram below gives a schematic view of the relationship between basicity index of the flux and impact toughness with a given wire. It is also indicated where Hobart fluxes are positioned according to their basicity index.

Basicity index vs 47J impact toughness

Alloying behavior

EN ISO 14174 classifies the flux according to its pick up behaviour of Si and pick up /burn off behavior of Mn according to the table below.

Metallurgica	Metallurgical behavior class 1 fluxes						
Symbol	Behavior	Contribution from flux					
1	Burn-off	0.7 -					
2	Burn-off	0.5 - 0.7					
3	Burn-off	0.3 - 0.5					
4	Burn-off	0.1 - 0.3					
5	Neutral	0 - 0.1					
6	Pick-up	0.1 - 0.3					
7	Pick-up	0.3 - 0.5					
8	Pick-up	0.5 - 0.7					
9	Pick-up	0.7 -					
Class 1. Si and Mn alloying							

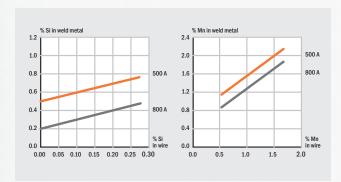
Si and Mn alloying effects according to EN ISO 14174 determined using S2 wire and welded at standardized parameters of 580 A/29 V/55 cm/min.

In the EN ISO 14174 designation S A AB 1 57 AC H5 the number 57 indicates that this flux is not adding any Si but adds 0.3-0.5 % of Mn under the given circumstances. Si acts as a deoxidizer and makes the weld pool more fluid, while Mn increases weld metal strength and impact toughness.

The higher the number for metallurgical behavior is, the more Si and/or Mn is alloyed through the flux. A high alloying flux can be beneficial for welding and / or mechanical properties especially in high dilution applications. However, it must be used with caution in multi-run welds and when using high Si and/or Mn alloyed wires, due to the risk of excessive alloy build up in the weld metal that can lead to deteriorated mechanical properties and an increased risk of cracks. The high alloying fluxes are also sensitive to welding parameters as the alloying increases with increasing arc voltage.

AWS A5.23 gives an indication of the metallurgical behaviour of the flux in the second and third part of the flux-wire designation. F8A2-EA2 (wire classification)-A4 (weld metal classification).

AWS also has another way to classify the chemical interaction of the flux and that is the Wall Neutrality Number (N). N is measured by making one weld pad using a specified set of parameters. Then another weld pad is made using the same set of parameters except for arc voltage, which is increased by 8 V. The Mn and Si content of the two weld pads are analyzed and the Wall Neutrality Number is then calculated according to the formula below.


 $N = 100 \text{ x } (|\Delta Mn| + |\Delta Si|)$

A flux is considered neutral when having a Wall Neutrality Number of 35 or lower.

Submerged Arc Welding Process

Hobart metallurgical behavior diagrams

For each flux Hobart gives the appropriate classification according to EN ISO 14174 with the two digit identification of metallurgical behaviour. In addition, diagrams are provided to show the typical weld metal analyses in relation to the wire analyses for silicon and manganese. Values are determined at both 500 and 800 A to provide guidance.

Metallurgical behavior diagram for flux SWX 110, a slightly Si and Mn alloying flux.

Alloying fluxes

Alloying fluxes add chromium, nickel and/or molybdenum to obtain a specific high alloy weld metal composition when using lower alloyed wires or strips.

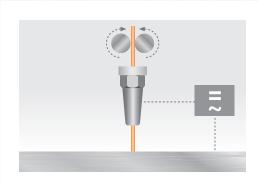
Voltage control is important, as it has an influence on the amount of flux taking part in the chemical reaction. Alloying fluxes are mostly applied in stainless and high alloy cladding applications.

Grain size

Flux grain size is important because it influences current carrying capacity and flux feeding and recovery:

- A correct grain size allows gases to escape from the molten weld pool.
- Grain size determines the current carrying capacity of the flux. Coarser particle size is needed for higher currents
- For high travel speeds in thin materials a fine-grained flux is preferred.
- Fluxes with excessive high amounts of fine particles could segregate in flux feeding and recovery systems.

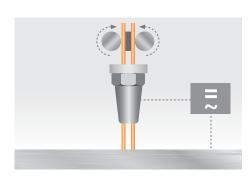
Grain size is commonly expressed by a minimum and maximum particle size. The grain size can be expressed either in mm (size of the openings in the sieve cloth in mm) or in mesh (the number of openings/inch in the sieve cloth)


A grain size of 0.2-1.6 mm means that the grains of the flux are larger than 0.2 mm (~65 mesh) and smaller than 1.6 mm (~12 mesh).

A grain size of 12-65 mesh means that the grains of the flux are smaller than 12 mesh (\sim 1.6 mm) and larger than 65 mesh (\sim 0.2 mm).

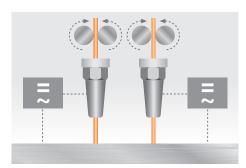
Hobart states grain size in both millimeters and mesh in product data.

Submerged arc welding process options


Submerged arc welding even in its simplest form is already a highly productive process. Deposition rates in single wire welding, the most widely applied method, can amount to 12 lbs/h when applications allow the use of large diameter wires at high welding currents. A variety of process options has evolved over the years with the objective to further increase the welding productivity; often developed to meet the challenges of specific industries. The following process options are observed in today's submerged arc welding.

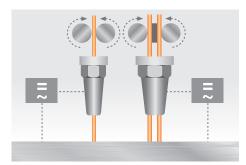
Single wire SAW

- \cdot $\,$ One wire, one feeder, one welding head
- · One power source, one control unit
- Wire diameter 1.6-5.0 mm (1/16" 3/16")
- · Welding current 200-1000 A
- · Generally applied across industries


Deposition rate up to 12 kg/h (26 lbs/h)

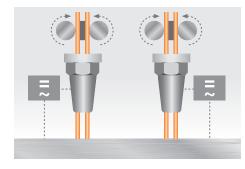
Twin wire SAW

- · Two wires, one 2-rolls wire feeder, one 2-wire contact nozzle
- · One power source, one control unit
- Wire diameter 1.2-3.2 mm (0.045"-1/8")
- · Total welding current 400-1200 A
- Generally applied across industries
- · Moderate investment to upgrade from single wire SAW


Deposition rate up to 20 kg/h (44 lbs/h)

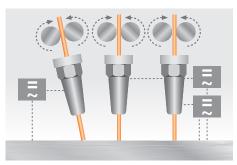
Tandem wire SAW

- · Two wires, two feeders, two welding torches
- · Two power sources, two control units
- · Wire diameter 3.2-5.0 mm (1/8"-3/16")
- · Total welding current 1200-2000 A
- · Shipbuilding, pressure vessels, heavy beams, bridges, offshore fab.
- · Relatively high investment compared to single wire SAW


Deposition rate up to 25 kg/h (55 lbs/h)

Tandem single-twin wire SAW

- 3 wires, one 1-roll feeder, one 2- roll feeder, one 1-wire head, one 2-wire head.
- · Two power sources, two control units
- · Wire diameter 2.4-4.0 mm (3/32"-5/32")
- · Total welding current 1100-1700 A
- Wind towers, pressure vessels
- · Small incremental investment compared to Tandem SAW


Deposition rate up to 30 kg/h (66 lbs/h)

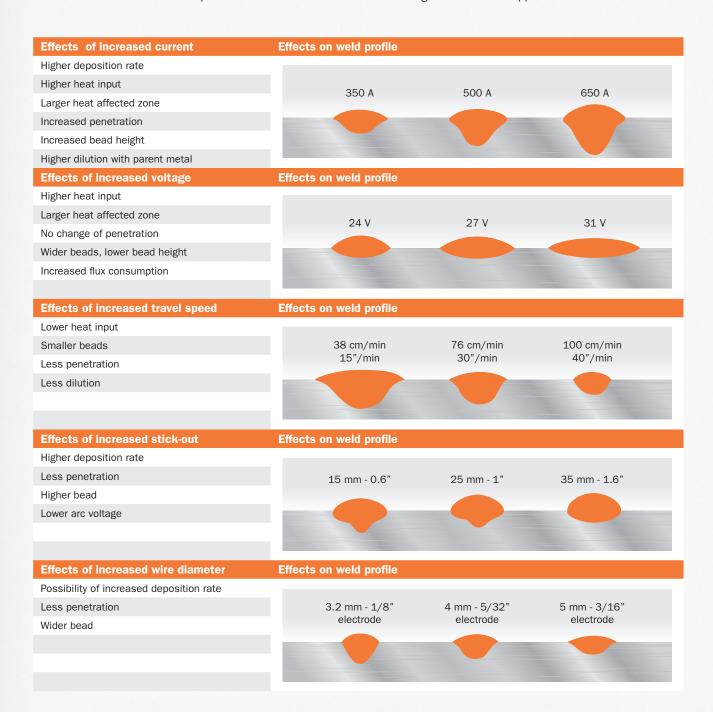
Tandem twin wire SAW

- 4 wires, two 2-rolls feeders, two 2-wire heads
- · Two power sources, two control units
- · Wire diameters 1.6-3.2 mm (1/16"-1/8")
- · Total welding current 1500-2200 A
- $\cdot \;\;$ Wind towers, pressure vessels
- · Small incremental investment compared to Tandem SAW

Deposition rate up to 35 kg/h (77 lbs/h)

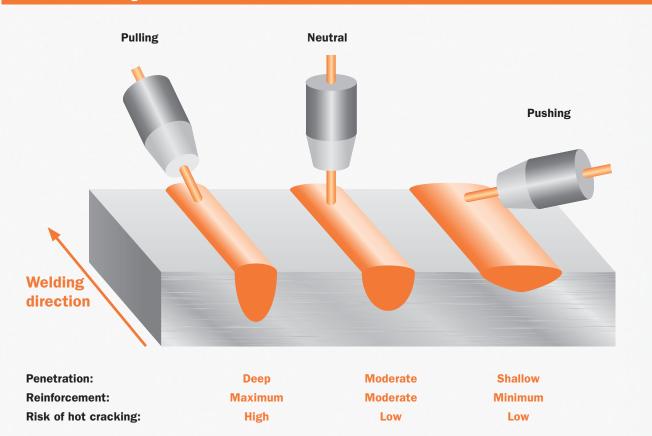
Multi wire SAW

- · Up to five wires, feeders, heads, power sources and control units
- · Wire diameters 3.2-5.0 mm (1/8"-3/16")
- · Total welding current 2000-5500 A
- · Pipemills, offshore, shipbuilding.
- · High investment


Deposition rate up to 125 kg/h with five wires (220 lbs/h)

Submerged Arc Welding Process

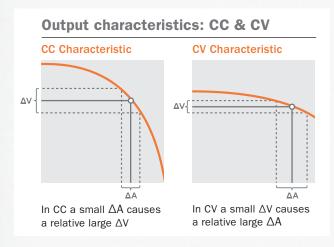
Effects of welding parameters


The welding parameters in submerged arc welding - arc voltage, welding current, travel speed, stick-out, torch angle, wire diameter, wire feed speed and polarity - all influence the shape and quality of the weld, and productivity. It is important to be aware of their individual and combined influence. In this chapter we do not discuss

welding defects that result from incorrect parameters – mostly set too low or too high. These are discussed in the trouble shooting section of this catalog. The table reviews the effects when individual welding parameters are increased, while all other parameters remain unchanged. Decreasing them will have opposite effects.

Effects of type of current and polarity **Effects on weld profile** DC+ Deepest penetration DC+ AC DC-Highest dilution Lowest deposition rate AC Lower penetration Lower dilution Higher deposition rate than DC+ DC-Higher deposition rate than AC Lowest dilution Lowest penetration Max. penetration Less penetration Least penetration Slow travel speed Higher travel speed Highest travel speed Mainly used for cladding

Effects of electrode angle in butt welds



Submerged Arc Power Sources

The performance of power sources is essential in mechanized or fully automated submerged arc welding, where they are often subjected to high duty cycles at high welding currents. A power source needs to be able to operate at welding currents as low as 300 A for thin materials and over 1000 A for thick materials, at up to 100% duty cycle. Robustness and durability are primary requirements, along with advanced electronic submerged arc functionality giving full control over the arc and its effects on the weld.

Power source characteristics

Constant current (CC) and constant voltage (CV) are two important principles. They used to be applied in separate submerged arc power source types, but are nowadays available in a single machine and can be switched on and off when needed.

A CC characteristic shows a relatively steep downward slope in the volt/ampere curve. The welding current is the primary parameter set on the machine. Fluctuations in arc length/arc voltage (ΔV) - which are inevitable during welding - will only cause small variations in amperage (ΔA). To obtain a stable process, arc voltage sensing wire feeders constantly adapt the wire feed speed to maintain the

welding current at the set value. CC is best applicable with larger diameter wires fed at comparatively low wire feed speeds, because this places lower demands on the wire feed speed range and acceleration of the motors. However, with today's (tacho controlled) wire feed motors, CC can be applied with smaller diameter wires as well. The constant current provides stable and dependable weld penetration when welding materials with medium or high wall thickness.

A CV characteristic allows the use of thin welding wires while maintaining a stable arc. The volt/ampere curve is relatively flat. The arc voltage is the primary parameter set on the power source. Small fluctuations in arc voltage (Δ V) will cause relatively big changes in amperage (Δ A), while the wire feed speed remains the same. A higher voltage gives lower amperage and consequently a lower melt-off rate of the wire. A lower voltage gives higher amperage and accelerated wire melt-off. In this self-regulating way, the process balances around the set voltage/arc length.

CV can be applied with all wire diameters, but performs best below Ø 2.4 mm (3/32"), due to the self-regulating effect. It is best suited for welding thin materials up to 12 mm (1/2") and for strip cladding. The constant voltage gives straight welds with constant bead width.

Making use of polarity

As listed under "Effects of welding parameters" polarity has an effect on penetration, deposition, dilution, heat input and arc stability. Use of this is being made in different SAW processes and process variants.

DC+ gives the deepest weld penetration and highest parent metal dilution, because most heat is developed at the surface of the weld pool (minus pole).

The table summarises the most important features of CC and CV applied in subarc power sources.

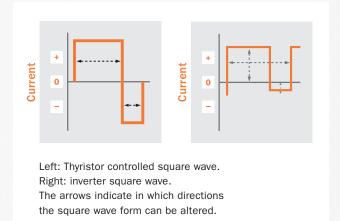
Feature	cc	cv
Open circuit voltage	60-80 V	25-55 V
Parameter setting	By welding current	By arc voltage
Polarity	AC / DC	AC / DC
Arc stability	Fluctuations	Stable
Arc regulation	Through wire feed speed	Self-regulating
Application (best practice)	Larger diameter wires	Smaller and larger diameter wires

AC wave balance

It also gives a stable arc, an optimal weld appearance, a good weld profile and reduced risk of porosity. For these reasons, DC+ is commonly used for single and twin-wire welding and for the leading wire in tandem and multi-wire operations.

Traditional sinusoidal AC gives ~15% higher deposition rate than DC+, shallower weld penetration and lower dilution. It is commonly used for trailing wires in tandem and multiwire systems to counteract magnetic arc blow and provides increased deposition. A drawback of conventional sinusoidal wave AC is poor arc ignition and stability, because the current passes through the zero point with a certain delay, due to the wave form. This disadvantage is taken away by modern AC square wave power sources.

DC- gives the highest deposition rate (~35% higher than DC+), because most heat is developed at the tip of the wire electrode. The main applications, however, make use of the reduced penetration and lower weld metal dilution. Examples are difficult to weld materials and strip cladding, where dilution with the parent metal needs to be limited.


Modern AC square wave power sources provide interesting possibilities to vary the DC+ / DC- ratio and their frequencies in AC welding, giving full control over deposition rate and penetration.

AC square wave technology

AC square wave technology applied in welding offers useful opportunities to shape the form of the AC sinus and influence essential welding characteristics such as penetration, deposition rate and travel speed, without changing the volt/ampere setting. It was one in a series of power source innovations to bring submerged arc welding at a higher performance level:

- AC square wave replacing sinusoidal AC
- AC/DC with CC&CV replacing AC with CC characteristic only
- Variable AC frequency
- Variable balance of electrode positive and negative instead of fixed 50/50

Square wave technology in welding power sources is based on either inverter or thyristor technology to control the wave form. Both technologies enable to change the AC+/AC- ratio (= AC wave balance), but there are differences in the way this is realized. In general, inverters offer total freedom in AC+/AC- ratio and AC wave frequencies settings, while Thyristor controlled wave frequency settings are derived from the mains net frequency.

Why apply AC square wave

Both DC+ and conventional sinusoidal AC are widely applied in submerged arc welding systems, offering weld quality and productivity in any type of fabrication.

The use of AC wave balance must be seen as a next step in the optimization of submerged arc welding, overcoming specific constraints while opening up new possibilities.

Constraints of conventional sinusoidal AC are:

- Time spent in the zero crossover area affects arc starts and arc stability negatively
- Lower percentage of time spent at set amperage lowers productivity
- AC+/AC- ratio is fixed at 50/50

Constraints of traditional DC+ are:

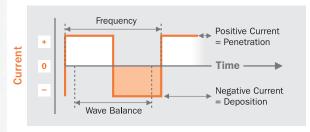
- Penetration can be too deep for the root pass causing burn through
- Low heat input and high deposition not obtainable at the same time without sacrificing bead appearance
- Sensitive to magnetic arc blow

AC wave balance

AC square wave technology has two main advantageous properties - the AC wave block form and the variable AC wave balance. Due to the block form, the current passes through the crossover area in milliseconds resulting in good arc starts and stability and more dwell time at set current.

Zero
Crossover
Area

+ 70%
0
- 30
%


Left: Conventional sinusoidal AC.

Current

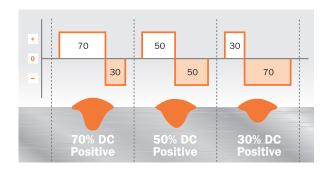
0

Right: Wave balance shifted to 70% AC+ and 30% AC-.

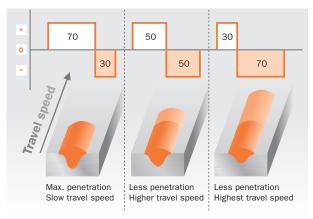
Effects of Wave Balance

Wave Balance = Adjustable ratio between penetration/deposition

The variable AC wave balance makes it possible to alter the share of AC+ versus AC- to any desired ratio and thereby to influence penetration and deposition rate. Increasing the + share will give deeper penetration and reduced deposition, while increasing the minus share will do the opposite.


Test data

The table reviews results of test welds with a variety of balance settings. Deposition rate and wire feed speed were measured for each setting. Welding parameters remained the same for all balance settings.


Balance	Actual wfs		Deposition	1
setting	(m/min)	(inches/min)	(kg/h)	(lbs/h)
DC+	2.1	83	7.9	17.4
80/20	2.3	90	8.7	19.2
70/30	2.5	98	9.4	20.7
76/33	2.6	102	9.8	21.6
60/40	2.7	106	10.2	22.5
50/50	2.8	110	10.5	23.1
40/60	2.9	114	10.9	24.0
33/67	3.0	118	11.3	24.9
30/70	3.1	122	11.7	25.8
20/80	3.1	122	11.7	25.8
DC-	3.2	126	12.0	26.5
Difference	DC+, DC-		34%	

Solid wire 3.2 mm (1/8"), 600 A, 31 V, 50 cm/min (20"/min), 30 mm (1.2") ESO.

Effect on penetration

Effect on travel

The images above show the effects of AC wave balance on penetration and on the adapted travel speed needed to accommodate increased deposition. Note that an increase in travel speed with other parameters remaining the same will result in a lower heat input and reduced plate deformation.

AC wave balance options summarized

AC wave balance offers the following options in single and multi-wire submerged arc welding:

- · Fine tuning of root penetration and deposition rate from single or lead wires
- · Increase of deposition rate from trailing wires
- · Increase of travel speed and reduction of heat input
- · Reduction of deformation
- · Elimination of arc blow

Miller AC wave balance

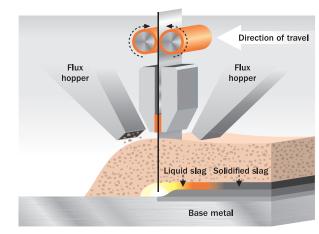
The SubArc AC/DC 1000/1250 Digital is Miller's latest AC power source with variable square wave balance (VBAC) for submerged arc welding. It is based on the proven SCR phase shift technology which Miller implemented in welding equipment as early as 1999 – years ahead of the first inverter square wave power source.

SubArc AC/DC 1000/1250 Digital features:

- Reliability. Like all Miller welding machines it is built for operations under heavy conditions, with low maintenance and long lifetime. Only one PC board is used for the entire machine.
- DC or VBAC + CC/CV characteristics, three-phase primary. 1000 A at 100% duty cycle/1250 A at 60% duty cycle.
- A preset choice of 14 wave balance/frequency settings – easy to use, tested to work and covering the majority of applications. This avoids complicated setting and testing with freely adjustable wave balance parameters. An optional software upgrade provides up to 81 optimized balance settings.
- No special equipment needed to connect power sources for multi-arc operation.

Miller Subarc System Interface Digital

Compatible with AC/DC-CC/CV power sources offers remote balance settings.


Standard wave balance/frequency settings

available from the Subarc System Interface Digital.

Balance	Frequency		
	60 Hz line	50 Hz line (US)	
Electrode positive			
80/20	18	15	
75/25	22.5	18.8	
70/30	18	15	
67/33	30	25	
60/40	18	15	
50/50	30	25	
50/50	18	15	
40/60	18	15	
33/67	30	25	
30/70	18	15	
25/75	22.5	18.8	
20/80	18	15	
Electrode negative			

SAW and ESW strip cladding

Strip cladding is used to create corrosion or wear resistant overlays on large non- or low-alloyed steel components used in, for example, the chemical, petrochemical, nuclear, steel mills and paper and pulp industries. It provides a cost efficient solution over using components in full stainless steel or Ni-alloys.

Flux hopper

Liquid Solidified slag slag

Base metal

SAW strip cladding

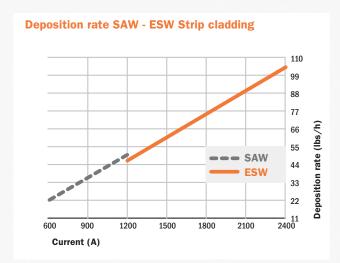
ESW strip cladding

Two process technologies

One technology is submerged arc strip cladding, formally denominated SASC, but normally referred to as SAW strip cladding. The other method is electroslag strip cladding. The formal designation is ESSC, but is mostly called ESW Strip cladding.

The SAW and ESW strip cladding processes use a strip electrode to cover a wide area with each run.

Strip dimensions are typically 30, 60 or 90 x 0.5 mm, but there is an increasing interest in 120 mm wide strip. Specially developed welding fluxes are needed to obtain the right characteristics for each process.


SAW strip cladding is an arc welding process. The function of the flux is basically the same as in standard submerged arc welding. It forms a slag to protect the weldpool and supports the formation of the weld bead.

In ESW strip cladding there is no arc between the strip and the parent metal and the flux is fed from only one side. The molten slag is electrically conductive and the heat needed to melt the strip and the parent metal surface is generated by the electrical resistance in the weld pool. Because of this, penetration and thus dilution is lower than with SAW cladding. Due to the high temperature of the weld pool and the high welding current a heavy duty welding head is necessary. The high welding current may cause weld defects such as uneven weld bead. This can be prevented by using a magnetic steering device for larger strip widths (≥ 60 mm / 2.4"). Moreover the ESW strip cladding process burns off some elements from the strip at a higher rate than SAW. The implication is that the strip for ESW cladding has to have a slightly different chemistry than SAW to achieve the desired chemistry of the deposit.

Comparison between the SAW and ESW cladding methods:				
Strip 60x0.5mm	SAW	ESW		
Deposition rate	12-15 kg/h (26-33 lbs/h)	20-27 kg/h (44-59 lbs/h)		
Travel speed	10-12 cm/min (4-5 inch/min)	18-24 cm/min (7-10 inch/min)		
Arc voltage	26-28 V	24-26 V		
Current	700-800 A	1200-1450 A		
Dilution	~20%	~10%		
Penetration	>0.8 mm (>0.03")	<0.5 mm (<0.02")		
Heat input	~12 kJ/mm	~12 kJ/mm		
No. of layers	Min 2	Min 1		
Deposit thickness	~8.5 mm (~1/3")	~4.5 mm (3/16")		
Flux consumption	0.8 kg/kg strip (0.8 lbs/lbs strip)	0.6 kg/kg strip (0.6 lbs/lbs strip)		

ESW strip cladding has the following benefits over SAW strip cladding:

- · Increased deposition rate.
- · High travel speed
- Low dilution
- Less penetration
- · Comparable heat input
- · Lower flux consumption.
- · Weld deposit obtainable in one layer

For both SAW and ESW strip cladding, standard SAW DC power sources are used. However, the current capacity has to be more or less doubled for ESW strip cladding, meaning that the investment cost for power sources will be at least doubled compared to SAW strip cladding. Furthermore ESW requires water cooling and in many cases magnetic steering devices increasing the difference in investment costs further. However, when ESW strip cladding is technically feasible in the application, the incremental investment costs for ESW compared to SAW are typically easily off set by the increased deposition rate and the fact that it is possible to reach the desired weld metal chemistry in one layer.

The current Hobart flux programme features one flux for SAW strip cladding and two fluxes for ESW strip cladding.

SWX 305

SAW strip cladding with austenitic stainless steel strip

SWX 330

ESW strip cladding with austenitic stainless steel strip **SWX 382**

ESW cladding with Ni-base strip

ITW Welding is a total solution provider; also for SAW and ESW strip cladding. An overview of our offerings for submerged arc welding, submerged arc strip cladding and ESW strip cladding is presented in the back of this catalogue.

Trouble shooting

Porosity	Probable cause	Solution
lolosity	Rusty plate	Wire brush or grind
-19 - 0	Oily plate	Degrease or preheat
	Wet plate	Preheat
	Wet flux	Redry flux
	Primer in welding zone	Remove primer
	Flux layer too thin	Increase flux bed height
	Contaminated joint Arc blow	Clean joint Reposition ground
Undercut	Probable cause	Solution
Onderoat	1 Tobable dause	Colucion
	Voltage too high	Adjust paparmeters
	Travel speed too high	Adjust travel speed
Tight slag	Probable cause	Solution
	Voltage too high	Adjust parameters
	Incorrect wire size	Adjust parameters
	Irregular weld	Adjust parameters
	Welding zone too hot	Cool down
	Joint prep too narrow	Adapt joint design
Burn through	Probable cause	Solution
	Current too high	Adjust parameters
	Voltage too low	Adjust parameters
	Travel speed too low	Adjust parameters
	Root face to small	Adjust parameters
	Poor fit-up	Improve fit-up
Longitudinal cracks	Probable cause	Solution
	Concave bead profile	Adjust parameters and torch position
	Weld depth/width ratio > 1	Adjust parameters
	Poor fit-up	Improve fit-up
	Rigid construction	Preheat
	Excessive length of weld pool	Adjust parameters
Transverse cracks	Probable cause	Solution
	Cooling rate too high	Preheat, increase interpass temperature, use preheated flux
	Excessive restraint	Preheat or adapt design
	Moisture in flux	Redry flux

Poor weld appearance	Probable cause	Solution
	Travel speed too high	Adjust parameters
	Voltage too low	Adjust parameters
	Current too high	Adjust parameters
	Poor fit-up	Improve fit-up
Slag inclusions	Probable cause	Solution
	Flux trapped in joint	Adjust torch angle and parameters. Change joint angle/design
	Joint opening angle too small	Adapt joint design
	Insufficient penetration	Adjust parameters
Cold lap	Probable cause	Solution
Cold lap	Probable cause Plate temperature too low	Solution Preheat
Cold lap		
Cold lap	Plate temperature too low	Preheat
Cold lap	Plate temperature too low Heat input too low	Preheat Adjust parameters
Cold lap Lack of penetration	Plate temperature too low Heat input too low Travel speed too high	Preheat Adjust parameters Adjust parameters
	Plate temperature too low Heat input too low Travel speed too high Negative polarity	Preheat Adjust parameters Adjust parameters Adjust parameters
	Plate temperature too low Heat input too low Travel speed too high Negative polarity Probable cause	Preheat Adjust parameters Adjust parameters Adjust parameters Solution
	Plate temperature too low Heat input too low Travel speed too high Negative polarity Probable cause Current too low	Preheat Adjust parameters Adjust parameters Adjust parameters Solution Adjust parameters
	Plate temperature too low Heat input too low Travel speed too high Negative polarity Probable cause Current too low Travel speed too high	Preheat Adjust parameters Adjust parameters Adjust parameters Solution Adjust parameters Adjust parameters
Lack of penetration	Plate temperature too low Heat input too low Travel speed too high Negative polarity Probable cause Current too low Travel speed too high Root face too large	Preheat Adjust parameters Adjust parameters Adjust parameters Solution Adjust parameters Adjust parameters Adjust parameters Adjust parameters Adapt joint design
Lack of penetration	Plate temperature too low Heat input too low Travel speed too high Negative polarity Probable cause Current too low Travel speed too high Root face too large Probable cause	Preheat Adjust parameters Adjust parameters Adjust parameters Solution Adjust parameters Adjust parameters Adjust parameters Adjust parameters Solution Solution
Lack of penetration	Plate temperature too low Heat input too low Travel speed too high Negative polarity Probable cause Current too low Travel speed too high Root face too large Probable cause Excessive flux bed depth	Preheat Adjust parameters Adjust parameters Adjust parameters Solution Adjust parameters Adjust parameters Adjust parameters Adjust parameters Adapt joint design Solution Reduce flux bed depth
Lack of penetration	Plate temperature too low Heat input too low Travel speed too high Negative polarity Probable cause Current too low Travel speed too high Root face too large Probable cause Excessive flux bed depth Dirty wire	Preheat Adjust parameters Adjust parameters Adjust parameters Solution Adjust parameters Adjust parameters Adjust parameters Adapt joint design Solution Reduce flux bed depth Use new wire

Magnetic Steering Device

Additionally it controls the weld bead ripple formation which maintains the consistency of both bond integrity and appearance. and fluxes, it ensures that the cladding process achieves uniformity, in terms of level and uniform weld bead edge formation. The magnetic steering device is intended for use with the ESW process. When used with stainless steel and nickel-base strip

CHARACTERISTICS

- Weight 15 kg (33 lbs)
- mm 004 x 082 x 083 noiznamid •
- Power 220V / 110V 50 60 Hz (21 x 11 x 16")
- Solenoid 10 A 24 VDC (red) / strip 90-120 mm (3.5 4.7")

747

ProHeatTM Rolling Inductor Induction Heating System

refinery, petrochemical, power and HVAC industries. solve many preheating problems and deliver fast, consistent heat for pipe fabrication shops that weld pipe spools for the The ProHeat 35 Induction Heating System with the Rolling Inductor is a simple and cost-effective heating process that can

Strip spool holder from 150 to 1.000 Kg (330 - 2200 lbs.) with adjustable inner diameter.

ProHeat 35 Liquid-Cooled System with Rolling Inductor. (Pipe stands sold separately.)

- Process piping
- Refinery
- Petrochemical
- Power piping
- Pressure vessels

BENELITS

- Maximum productivity
- Quick time to temperature
- Heating while rolling allows
- No coiling of cable continuous fabrication
- Compact and portable for use
- throughout the pipeshop
- Eliminates open flames Improved safety
- Cooler shop environment and
- reduced operator fatigue
- Optimal consistency and quality
- Even distribution of heat

eliminates quality issues

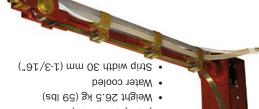
Shipping Weight	Dimensions	Required Cooler	Maximum Part Preheat Temperature	e Range Usage	Ambient Temperatu Storage	Rated Output
18:1 kg	.ni 35.2 (mm ££1); H .w: (168 mm) 8.0; (mm 802); U .ni 8 (mm £02); D	Miller Heavy-Duty Induction Cooler (#195 406) with coolant (#300 355)	372。C (e00。E) *	(35° F to 140° F) 0° C to 60°C	(-40° F to 180° F) -40° C to 82°C	350 Amps at 100% Duty Cycle

Cladding Heads

For Mozzle and Pipe Application

both circumferential and longitudinal cladding. The following head is designed for SAW/ESW

For Standard Application


60 mm Cladding Head

used in conjunction with the Miller RAD 100/400 drive motor. It is recommended that all cladding $\ensuremath{\mathsf{SAW}}\xspace \ensuremath{\mathsf{ESW}}\xspace$ heads are

8" Diameter Head

CHARACTERISTICS

- Minimum inside diameter
- pipe clad 203 mm 8"
- Max current 750 A (100% duty cycle)
- mm 021 x 021 x 64£1 noisnamid •
- ("8 x 8 x 8 \tau 8G)

10" Diameter Head

CHARACTERISTICS

- Minimum inside diameter
- pipe clad 260 mm 10"
- Max current 850 A
- (100% duty cycle)
- Dimension
- 1349 x 200 x 200 mm
- ("8 x 8 x 8\1 83)
- Weight 27 kg

- (sdl 09)
- - mm 05 dtbiw qirt2 . Water cooled

(4-3/16") mm 05 dtbiw qirt2 • Water cooled

> (sdl £3) • Weight 27.5 kg

> > • Dimension

(58 1/8 x 9 1/2 x 9")

1349 x 240 x 255 mm

pipe clad 310 mm - 12" • Minimum inside diameter

12" Diameter Head

(100% duty cycle)

Max current 1000 A

CHARACTERISTICS

(4-3/16")

120 mm Cladding Head

CHARACTERISTICS

(13/16" - 23/8" - 31/2")

mm 0e - 0a - 0£ dtbiw qirt2

90 mm Cladding Head

• Weight 19 kg (41.8 lbs)

220 x 230 x 400 mm

(TOO% duty cycle)

Max current 3000 A

CHARACTERISTICS

(13/16" - 23/8")

Water cooled

("41 x 8 x 8)

• Dimension

mm 09 - 05 dtbiw qirt2 •

200 x 230 x 360 mm

(100% duty cycle)

Max current 2000 A

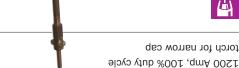
CHARACTERISTICS

Weight 13.5 kg (29.7 lbs)

Water cooled

("91 x 8 x 8)

• Dimension


- (100% duty cycle) • Max current 3600 A
- Dimension
- 230 x 230 x 470 mm

- ("61 x 8 x 8)
- Weight 25 kg (55 lbs)
- Water cooled
- Strip width
- (23/8" 31/2" 43/4") mm 021 - 09 - 09

Submerged Arc Torches System

Single Wire Narrow Gap Torch

PROCESS

- (WAS) gniblew · Submerged arc
- (3/32 5/32)• Wire diameter 2.4 - 4.0 mm
- PTFE insulation • For depth 50 - 350 mm (2-14")

Tandem Wire Narrow Gap Torch

up to 350° C (660°F) Insulation type Ceramic up to 200° C (390°F)

OBI 1200

flux flow nozzle. with concentric cycle torch 100% duty ,qmA 00S£

("4/1 - 91/1)

mm 2.2 - 8.1

(WAZ) gnibleW

Wire diameter

,qmA 008

OBI 600

flux flow nozzle. with concentric cycle torch 100% duty

PROCESS

- Wire diameter (WAZ) §niblew · Submerged arc
- (1/16 7/32") mm 2.2 - 8.1

Single Wire Torch Short / Long

cycle torches 1200 Amp, 100% duty

bBOCE22

- Submerged arc
- Wire diameter 2.4 4.0 mm (WAS) gniblew

torches for narrow gap

800 Amp, 100% duty cycle

- For depth 50 350 mm (2-14") (3/32 - 5/32)
- PTFE insulation
- · Ceramic insulation up to 200° C (390°F)

up to 350° C (660°F)

Single Wire Narrow Gap Flat Torch

torch for narrow gap 800 Amp, 100% duty cycle

Iwin Arc Torch Short / Long

with concentric flux flow nozzle 1200 Amp, 100% duty cycle twin torches

SAW Accessories

Miller Tractor MT 1500

to produce, high quality submerged arc welds. A motorized, highly flexible welding tractor designed

- SubArc AC/DC 1250 Digital

- SubArc DC 1250 Digital

- SubArc DC 800 Digital Miller power supplies

• Recommended Submerged arc (SAW)

PROCESSES

PACKAGE INCLUDES

- RAD-400 drive motor • Digital sysem interface
- Subarc Flux hopper Digital Low Voltage
- Torch • Wire reel
- Tractor guide rolls Remote start/stop control
- Wire straightener

Wire Drive Assemblies

Miller offers either standard or high-speed 24 V Heavy-duty wire assemblies.

CHARACTERISTICS

- SubArc Strip Drive 100 Digital Low Voltage (ESW)
- Low speed, right-angle wire drive assembly
- SubArc Wire Drive 400 Digital Low Voltage

- Standard speed, right-angle wire drive assembly
- SubArc Wire Drive 780 Digital Low Voltage
- High speed, right-angle wire drive assembly

SubArc Flux Hopper Digital Low Voltage

of any flux-hopper mounted recovery system. A slag screen is also provided. Automatic flux valve will carry 11.3 kg (25 lbs) of flux. The opening is sized to allow hook-up

Power supply 24 V

Compressed Air Flux Feeder

to enable pre-heated flux to be kept at a constant temperature. The automatic air compressed flux feeding system is electronically controlled

CHARACTERISTICS

- Storage capacity from 120 205 I (32 205 gal).
- Working temperature 100°C (212°F)
- Voltage supply 220 V
- Max input power 2800 W

Submerged Arc System

SubArc DC 650/800 and SubArc 1000/1250 Digital Submerged Arc Welding

as air carbon arc gouging plus the endurance to handle demanding industrial applications. Three-phase, CC/CV DC power sources are designed to provide a superior arc for the SAW/ESW welding process as well

SubArc DC 650 / 800 Digital

- Amperage 50 815 A
- Voltage 10-65 V
- V At ta A 038 tudbuo bateA •
- (100% duty cycle)

SubArc DC 1000 / 1250 Digital

Voltage 10-60 V

(100% duty cycle)

V AA is A 0001 inqiuo bateA •

• Amperage 100-1250 A

PROCESSES

- Submerged arc welding (SAW/ESW)

• Flux cored (FCAM)

CHARACTERISTICS

ΛΟ/00 •

• DC

- · Requires three phase power
- Easy to integrate, Mod-bus 24 VAC low voltage control power
- digital interface

SubArc AC/DC 1000/1250 Digital Submerged Arc Welding Power Source

(WS3/WAS)

PROCESSES

Submerged arc welding

(increased mechanical properties and reduced distortion). AC/DC square wave provides excellent quality of penetration/bead profile and high performance in deposition rate with low heat input Three-phase squarewave AC/DC machine with phase-shifting capability with steps to refine arc.

CHARACTERISTICS

- ΛΟ/ΟΟ •
- AC/DC Variable squarewave
- Frequencies 10 to 90Hz · Requires three phase power
- Amperage 250 1250 A
- Voltage 25 44V (71 OCV)
- Rated output 1000 A at 44 VDC
- (TOO% duty cycle)
- digital interface • Easy to integrate, Mod-bus

PROCESSES

- Submerged arc welding (SAW)
- Electroslag (ESW)

Automatic digital weld controllers offer reliability, flexibility and performance with their ability to interface with AC or DC,

- GMAW spray
- (with customer-

(bionalos bailqqua

CC/CV power sources having remote contactor and output control capabilities.

SubArc Interface Digital Automatic Weld Control

S Phase

CHARACTERISTICS

- Supply single phase 24VAC 20A
- Welding power source CV, AC or DC
- flux valve control nuəm/du fə2 •
- burnback/crater time
- wire feeder speed setting
- amperage/voltage/WFS range look
- memory for up to 15 programs
- arc time and arc cycles
- breflow/postflow
- start time/run-in
- and frequency - digital setting of AC wave balance
- Terminal block for easy integration of
- hard automation or remote control

Technology Increases SAW Deposition Rates

SubArc AC/DC 1000/1250 Digital Submerged Arc Welding Power Source

limitations of SAW with all other processes including DC electrode positive (DCEP), DC electrode negative (DCEM) and traditional AC. Variable balance AC/DC squarewave submerged arc welding (VAR) technology from Miller overcomes the traditional problems or

control over AC wave balance and frequency The SubArc AC/DC 1000/1250 Digital gives full

- Maximized deposition rate. 30% higher or more is feasible,
- · Smaller angles and lower filler metal consumption using the same parameters.
- and increased mechanical properties · Reduced heat input, minimized distortion
- · Penetration control to minimize the risk of lack of fusion
- Minimized magnetic arc blow

- Substantially lower power consumption

- · Reduced arc interactions in multi-wire processes
- Control of bead shape
- Excellent arc start
- Improved arc stability compared to traditional •
- Reduced weld over thickness

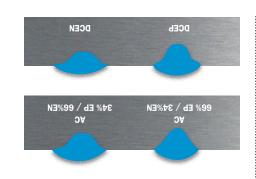
user-friendly setting. balance/frequency combinations and choice of 14 most commonly used The SubArc AC/DC 1000/1250 Digital has a

another, and cannot be individually adjusted. Balance and frequency are dependent on one after the decimal point indicate frequency. followed by a decimal point. The two digits two digits indicate the positive balance value frequency, shown on the lower display. The first upper display, adjusts the AC balance and Balance selection, indicated by BL.FR in the

Electrode negative 97 81 20\80 8.81 97 18 30/70 30 **79/EE** 09/07 18 09/09 09/09 81 07/09 £E/78 18 70/30 8.81

81

9nil zd08 | 9nil zd08





Balance/frequency combinations

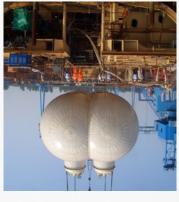
Penetration profiles

Table of Contents

Disclaimer: The information contained herein is furnished for reference purposes only and is believed to be accurate and reliable. Typical data are those obtained when welding and testing are performed in accordance with prescribed standards and guidelines. Other tests may produce different results and typical data should not be assumed to yield similar results in a particular application or weldment. ITW Welding does not assume responsibility for any results obtained by persons over whose methods it has no control. It is the user's responsibility to determine the suitability of any products or methods mentioned herein for a particular purpose. In light of the foregoing, ITW Welding specifically disclaims all warranties, express or implied, including warranties of merchantability and fitness for a particular purpose, and further disclaims any liability for consequential or incidental damages of any kind, including lost profits.

Professional Technical Support for You

Process improvement - whether to increase output, reduce rejects or meeting structural requirements - are always profit boosting initiatives.


ITW Welding has assigned a dedicated expert team aiming at improving submerged arc operations. The team has access to a number of SubArc weld centers where welding procedures are developed, weld issues resolved and welding performances improved. Our application experts share their time between field support and development work and are available for advanced consultations.

A unique offering

We can examine your submerged arc welding processes and together review options for improvements which will give real financial benefits. Contact us and discover ways to optimize your submerged arc processes to their full potential.

Submerged Arc Welding framment